Superior Physiological Adaptations After a Microcycle of Short Intervals Versus Long Intervals in Cyclists

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Bent R. Rønnestad
Search for other papers by Bent R. Rønnestad in
Current site
Google Scholar
PubMed
Close
,
Sjur J. Øfsteng
Search for other papers by Sjur J. Øfsteng in
Current site
Google Scholar
PubMed
Close
,
Fabio Zambolin
Search for other papers by Fabio Zambolin in
Current site
Google Scholar
PubMed
Close
,
Truls Raastad
Search for other papers by Truls Raastad in
Current site
Google Scholar
PubMed
Close
, and
Daniel Hammarström
Search for other papers by Daniel Hammarström in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: To compare the effects of a 1-week high-intensity aerobic-training shock microcycle composed of either 5 short-interval sessions (SI; n = 9, 5 series with 12 × 30-s work intervals interspersed with 15-s recovery and 3-min recovery between series) or 5 long-interval sessions (LI; n = 8, 6 series of 5-min work intervals with 2.5-min recovery between series) on indicators of endurance performance in well-trained cyclists. Methods: Before and following 6 days with standardized training loads after the 1-week high-intensity aerobic-training shock microcycle, both groups were tested in physiological determinants of endurance performance. Results: From pretraining to posttraining, SI achieved a larger improvement than LI in maximal oxygen uptake (5.7%; 95% confidence interval, 1.3–10.3; P = .015) and power output at a blood lactate concentration of 4 mmol·L−1 (3.8%; 95% confidence interval, 0.2–7.4; P = .038). There were no group differences in changes of fractional use of maximal oxygen uptake at a workload corresponding to a blood lactate concentration of 4 mmol·L−1, gross efficiency, or the 1-minute peak power output from the maximal-oxygen-uptake test. Conclusion: The SI protocol may induce superior changes in indicators of endurance performance compared with the LI protocol, indicating that SI can be a good strategy during a 1-week high-intensity aerobic-training shock microcycle in well-trained cyclists.

Rønnestad, Øfsteng, and Hammarström are with the Section for Health and Exercise Physiology, Inst of Public Health and Sport Sciences, Inland Norway University of Applied Sciences, Lillehammer, Norway. Zambolin is with the Dept of Medicine (DIMED), University of Padova, Padova, Italy. Raastad is with the Dept of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway.

Rønnestad (bent.ronnestad@inn.no) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle: part I: cardiopulmonary emphasis. Sports Med. 2013;43(5):313338. PubMed ID: 23539308 doi:10.1007/s40279-013-0029-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Laursen PB, Jenkins DG. The scientific basis for high-intensity interval training: optimising training programmes and maximising performance in highly trained endurance athletes. Sports Med. 2002;32(1):5373. PubMed ID: 11772161 doi:10.2165/00007256-200232010-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Issurin VB. Benefits and limitations of block periodized training approaches to athletes’ preparation: a review. Sports Med. 2016;46(3):329338. PubMed ID: 26573916 doi:10.1007/s40279-015-0425-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Ronnestad BR, Hansen J, Ellefsen S. Block periodization of high-intensity aerobic intervals provides superior training effects in trained cyclists. Scand J Med Sci Sports. 2014;24(1):3442. PubMed ID: 22646668 doi:10.1111/j.1600-0838.2012.01485.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Clark B, Costa VP, O’Brien BJ, Guglielmo LG, Paton CD. Effects of a seven day overload-period of high-intensity training on performance and physiology of competitive cyclists. PLoS One. 2014;9(12):e115308. PubMed ID: 25521824 doi:10.1371/journal.pone.0115308

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Ronnestad BR, Vikmoen O. A 11-day compressed overload and taper induces larger physiological improvements than a normal taper in elite cyclists. Scand J Med Sci Sports. 2019;29(12):18561865. PubMed ID: 31410894 doi:10.1111/sms.13536

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Tschakert G, Hofmann P. High-intensity intermittent exercise: methodological and physiological aspects. Int J Sports Physiol Perform. 2013;8(6):600610. PubMed ID: 23799827 doi:10.1123/ijspp.8.6.600

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Midgley AW, McNaughton LR, Wilkinson M. Is there an optimal training intensity for enhancing the maximal oxygen uptake of distance runners?: empirical research findings, current opinions, physiological rationale and practical recommendations. Sports Med. 2006;36(2):117132. PubMed ID: 16464121 doi:10.2165/00007256-200636020-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Tabata I, Nishimura K, Kouzaki M, et al. Effects of moderate-intensity endurance and high-intensity intermittent training on anaerobic capacity and VO2max. Med Sci Sports Exerc. 1996;28(10):13271330. PubMed ID: 8897392 doi:10.1097/00005768-199610000-00018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Iaia FM, Thomassen M, Kolding H, et al. Reduced volume but increased training intensity elevates muscle Na+–K+ pump alpha1-subunit and NHE1 expression as well as short-term work capacity in humans. Am J Physiol Regul Integr Comp Physiol. 2008;294(3):R966R974. PubMed ID: 18094063 doi:10.1152/ajpregu.00666.2007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Ronnestad BR, Ellefsen S, Nygaard H, et al. Effects of 12 weeks of block periodization on performance and performance indices in well-trained cyclists. Scand J Med Sci Sports. 2014;24(2):327335. PubMed ID: 23134196 doi:10.1111/sms.12016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Laursen PB, Shing CM, Peake JM, Coombes JS, Jenkins DG. Influence of high-intensity interval training on adaptations in well-trained cyclists. J Strength Cond Res. 2005;19(3):527533. PubMed ID: 16095414 doi:10.1519/15964.1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Helgerud J, Hoydal K, Wang E, et al. Aerobic high-intensity intervals improve VO2max more than moderate training. Med Sci Sports Exerc. 2007;39(4):665671. PubMed ID: 17414804 doi:10.1249/mss.0b013e3180304570

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Seiler S, Jøranson K, Olesen BV, Hetlelid KJ. Adaptations to aerobic interval training: interactive effects of exercise intensity and total work duration. Scand J Med Sci Sports. 2013;23(1):7483. PubMed ID: 21812820 doi:10.1111/j.1600-0838.2011.01351.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Ronnestad BR, Hansen J, Vegge G, Tonnessen E, Slettalokken G. Short intervals induce superior training adaptations compared with long intervals in cyclists—an effort-matched approach. Scand J Med Sci Sports. 2015;25(2):143151. PubMed ID: 24382021 doi:10.1111/sms.12165

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Rønnestad BR, Hansen J, Nygaard H, Lundby C. Superior performance improvements in elite cyclists following short-interval vs effort-matched long-interval training. Scand J Med Sci Sports. 2020;30(5):849857. PubMed ID: 31977120 doi:10.1111/sms.13627

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Jeukendrup AE, Craig NP, Hawley JA. The bioenergetics of World Class Cycling. J Sci Med Sport. 2000;3(4):414433. PubMed ID: 11235007 doi:10.1016/S1440-2440(00)80008-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Péronnet F, Massicotte D. Table of nonprotein respiratory quotient: an update. Can J Sport Sci. 1991;16(1):2329. PubMed ID: 1645211

  • 19.

    Noordhof DA, Skiba PF, de Koning JJ. Determining anaerobic capacity in sporting activities. Int J Sports Physiol Perform. 2013;8(5):475482. PubMed ID: 24026759 doi:10.1123/ijspp.8.5.475

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Sylta O, Tønnessen E, Seiler S. From heart-rate data to training quantification: a comparison of 3 methods of training-intensity analysis. Int J Sports Physiol Perform. 2014;9(1):100107. PubMed ID: 24408353 doi:10.1123/ijspp.2013-0298

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377381. PubMed ID: 7154893 doi:10.1249/00005768-198205000-00012

  • 22.

    Foster C, Florhaug JA, Franklin J, et al. A new approach to monitoring exercise training. J Strength Cond Res. 2001;15(1):109115. PubMed ID: 11708692

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Turnes T, de Aguiar RA, Cruz RS, Caputo F. Interval training in the boundaries of severe domain: effects on aerobic parameters. Eur J Appl Physiol. 2016;116(1):161169. PubMed ID: 26373721 doi:10.1007/s00421-015-3263-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Christensen EH, Hedman R, Saltin B. Intermittent and continuous running (A further contribution to the physiology of intermittent work.). Acta Physiol Scand. 1960;50(3–4):269286. PubMed ID: 14448704 doi:10.1111/j.1748-1716.1960.tb00181.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Psilander N, Wang L, Westergren J, Tonkonogi M, Sahlin K. Mitochondrial gene expression in elite cyclists: effects of high-intensity interval exercise. Eur J Appl Physiol. 2010;110(3):607607. PubMed ID: 20571821 doi:10.1007/s00421-010-1581-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Lucia A, Hoyos J, Pérez M, Santalla A, Earnest CP, Chicharro JL. Which laboratory variable is related with time trial performance time in the Tour de France? Br J Sports Med. 2004;38(5):636640. PubMed ID: 15388555 doi:10.1136/bjsm.2003.008490

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Almquist NW, Nygaard H, Vegge G, Hammarström D, Ellefsen S, Rønnestad BR. Systemic and muscular responses to effort-matched short intervals and long intervals in elite cyclists. Scand J Med Sci Sports. 2020;30(7):11401150. PubMed ID: 32267032 doi:10.1111/sms.13672

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Edgett BA, Foster WS, Hankinson PB, et al. Dissociation of increases in PGC-1α and its regulators from exercise intensity and muscle activation following acute exercise. PLoS One. 2013;8(8):e71623. PubMed ID: 23951207 doi:10.1371/journal.pone.0071623

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Lundby C, Montero D, Joyner M. Biology of VO2 max: looking under the physiology lamp. Acta Physiol. 2017;220(2):218228. PubMed ID: 27888580 doi:10.1111/apha.12827

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Halson SL, Bridge MW, Meeusen R, et al. Time course of performance changes and fatigue markers during intensified training in trained cyclists. J Appl Physiol . 2002;93(3):947956. PubMed ID: 12183490 doi:10.1152/japplphysiol.01164.2001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Ronnestad BR, Hansen J, Thyli V, Bakken TA, Sandbakk O. 5-Week block periodization increases aerobic power in elite cross-country skiers. Scand J Med Sci Sports. 2016;26(2):140146. PubMed ID: 25648345 doi:10.1111/sms.12418

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Rønnestad BR, Hansen J, Ellefsen S. Block periodization of high-intensity aerobic intervals provides superior training effects in trained cyclists. Scand J Med Sci Sports. 2014;24(1):3442. PubMed ID: 22646668 doi:10.1111/j.1600-0838.2012.01485.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Thum JS, Parsons G, Whittle T, Astorino TA. High-intensity interval training elicits higher enjoyment than moderate intensity continuous exercise. PLoS One. 2017;12(1):e0166299. PubMed ID: 28076352 doi:10.1371/journal.pone.0166299

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Jones AM, Carter H. The effect of endurance training on parameters of aerobic fitness. Sports Med. 2000;29(6):373386. PubMed ID: 10870864 doi:10.2165/00007256-200029060-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2878 1220 41
Full Text Views 134 28 2
PDF Downloads 199 47 3