Physiological Determinants of Ultramarathon Trail-Running Performance

Click name to view affiliation

Alexandra M. Coates
Search for other papers by Alexandra M. Coates in
Current site
Google Scholar
PubMed
Close
,
Jordan A. Berard
Search for other papers by Jordan A. Berard in
Current site
Google Scholar
PubMed
Close
,
Trevor J. King
Search for other papers by Trevor J. King in
Current site
Google Scholar
PubMed
Close
, and
Jamie F. Burr
Search for other papers by Jamie F. Burr in
Current site
Google Scholar
PubMed
Close
Restricted access

Context: The physiological determinants of ultramarathon success have rarely been assessed and likely differ in their contributions to performance as race distance increases. Purpose: To examine predictors of performance in athletes who completed either a 50-, 80-, or 160-km trail race over a 20-km loop course on the same day. Methods: Measures of running history, aerobic fitness, running economy, body mass loss, hematocrit alterations, age, and cardiovascular health were examined in relation to race-day performance. Performance was defined as the percentage difference from the winning time at a given race distance, with 0% representing the fastest possible time. Results: In the 50-km race, training volumes, cardiovascular health, aerobic fitness, and a greater loss of body mass during the race were all related to better performance (all P < .05). Using multiple linear regression, peak velocity achieved in the maximal oxygen uptake test (β = −11.7, P = .002) and baseline blood pressure (β = 3.1, P = .007) were the best performance predictors for the men’s 50-km race (r = .98, r2 = .96, P < .001), while peak velocity achieved in the maximal oxygen uptake test (β = −13.6, P = .001) and loss of body mass (β = 12.8, P = .03) were the best predictors for women (r = .94, r2 = .87, P = .001). In the 80-km race, only peak velocity achieved in the maximal oxygen uptake test predicted performance (β = −20.3, r = .88, r2 = .78, P < .001). In the 160-km race, there were no significant performance determinants. Conclusions: While classic determinants of running performance, including cardiovascular health and running fitness, predict 50-km trail-running success, performance in longer-distance races appears to be less influenced by such physiological parameters.

The authors are with the Human Performance and Health Research Laboratory, Dept of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada.

Burr (burrj@uoguelph.ca) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Knechtle B. Ultramarathon runners: nature or nurture? Int J Sports Physiol Perform. 2012;7(4):310312. PubMed ID: 23197583 doi:10.1123/ijspp.7.4.310

  • 2.

    Millet GY. Can neuromuscular fatigue explain running strategies and performance in ultra-marathons? Sport Med. 2011;41(6):489506. doi:10.2165/11588760-000000000-00000

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Millet GY, Hoffman MD, Morin JB. Sacrificing economy to improve running performance – A reality in the ultramarathon? J Appl Physiol. 2012;113(3):507509. PubMed ID: 22492933 doi:10.1152/japplphysiol.00016.2012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Millet GY, Banfi JC, Kerherve H, et al. Physiological and biological factors associated with a 24 h treadmill ultra-marathon performance. Scand J Med Sci Sport. 2011;21(1):5461. doi:10.1111/j.1600-0838.2009.01001.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Hoffman MD. Injuries and health considerations in ultramarathon runners. Phys Med Rehabil Clin N Am. 2016;27(1):203216. PubMed ID: 26616184 doi:10.1016/j.pmr.2015.08.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Hoffman MD, Fogard K. Factors related to successful completion of a 161-km ultramarathon. Int J Sports Physiol Perform. 2011;6(1):2537. PubMed ID: 21487147 doi:10.1123/ijspp.6.1.25

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Midgley AW, McNaughton LR, Jones AM. Training to enhance the physiological determinants of long-distance running performance: can valid recommendations be given to runners and coaches based on current scientific knowledge? Sport Med. 2007;37(10):857880. doi:10.2165/00007256-200737100-00003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Noakes TD, Myburgh KH, Schall R. Peak treadmill running velocity during the vo2 max test predicts running performance. J Sports Sci. 1990;8(1):3545. PubMed ID: 2359150 doi:10.1080/02640419008732129

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Knechtle B, Tanda G. Effects of training and anthropometric factors on marathon and 100 km ultramarathon race performance. Open Access J Sport Med. 2015:129. doi:10.2147/OAJSM.S80637

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Bale P, Bradbury D, Colley E. Anthropometric and training variables related to 10km running performance. Br J Sports Med. 1986;20(4):170173. PubMed ID: 3814989 doi:10.1136/bjsm.20.4.170

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Knechtle B, Knechtle P, Rosemann T. Race performance in male mountain ultra-marathoners: anthropometry or training? Percept Mot Skills. 2010;110(3):721735. doi:10.2466/pms.110.3.721-735

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Knechtle B, Knechtle P, Rosemann T, Lepers R. Personal best marathon time and longest training run, not anthropometry, predict performance in recreational 24-hour ultrarunners. J Strength Cond Res. 2011;0(0):17.

    • Search Google Scholar
    • Export Citation
  • 13.

    Coyle EF. Physiological determinants of endurance exercise performance. J Sci Med Sport. 1999;2(3):181189. PubMed ID: 10668757 doi:10.1016/S1440-2440(99)80172-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Zouhal H, Groussard C, Minter G, et al. Inverse relationship between percentage body weight change and finishing time in 643 forty-two-kilometre marathon runners. Br J Sports Med. 2011;45(14):11011105. PubMed ID: 21160081 doi:10.1136/bjsm.2010.074641

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Hoffman MD, Stuempfle KJ. Hydration strategies, weight change and performance in a 161 km ultramarathon. Res Sport Med. 2014;22(3):213225. doi:10.1080/15438627.2014.915838

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Hoffman MD, Hew-Butler T, Stuempfle KJ. Exercise-associated hyponatremia and hydration status in 161-km ultramarathoners. Med Sci Sports Exerc. 2013;45(4):784791. PubMed ID: 23135369 doi:10.1249/MSS.0b013e31827985a8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Hoffman MD, Goulet EDB, Maughan RJ. Considerations in the use of body mass change to estimate change in hydration status during a 161-kilometer ultramarathon running competition. Sport Med. 2018;48(2):243250. doi:10.1007/s40279-017-0782-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Rüst CA, Knechtle B, Rosemann T, Lepers R. Analysis of performance and age of the fastest 100-mile ultra-marathoners worldwide. Clinics. 2013;68(5):605611. PubMed ID: 23778421

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    King TJ, Coates AM, Tremblay JC, et al. Vascular function is differentially altered by distance after prolonged running. Med Sci Sport Exerc. 2021;53(3):597–605. doi:10.1249/MSS.0000000000002493

    • Search Google Scholar
    • Export Citation
  • 20.

    Coates AM, King TJ, Currie KD, et al. Alterations in cardiac function following endurance exercise are not duration dependent. Front Physiol. 2020;11:581797. PubMed ID: 33071833 doi:10.3389/fphys.2020.581797

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Plews DJ, Laursen PB, Stanley J, Kilding AE, Buchheit M. Training adaptation and heart rate variability in elite endurance athletes: opening the door to effective monitoring. Sport Med. 2013;43(9):773781. doi:10.1007/s40279-013-0071-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Jones AM, Doust JH. A 1% treadmill grade most accurately reflects the energetic cost of outdoor running. J Sports Sci. 1996;14(4):321327. PubMed ID: 8887211 doi:10.1080/02640419608727717

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Padulo J, Annino G, Smith L, et al. Uphill running at iso-efficiency speed. Int J Sports Med. 2012;33(10):819823. PubMed ID: 22562739 doi:10.1055/s-0032-1311588

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Pallarés JG, Morán-Navarro R, Ortega JF, Fernández-Elías VE, Mora-Rodriguez R. Validity and reliability of ventilatory and blood lactate thresholds in well-trained cyclists. PLoS One. 2016;11(9):116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Fletcher JR, Esau SP, MacIntosh BR. Economy of running: beyond the measurement of oxygen uptake. J Appl Physiol. 2009;107(6):19181922. PubMed ID: 19833811 doi:10.1152/japplphysiol.00307.2009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Scrimgeour AG, Noakes TD, Adams B, Myburgh K. The influence of weekly training distance on fractional utilization of maximum aerobic capacity in marathon and ultramarathon runners. Eur J Appl Physiol Occup Physiol. 1986;55(2):202209. PubMed ID: 3699009 doi:10.1007/BF00715006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Davies CTM, Thompson MW. Aerobic performance of female marathon and male ultramarathon athletes. Eur J Appl Physiol Occup Physiol. 1979;41(4):233245. PubMed ID: 499187 doi:10.1007/BF00429740

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Gatterer H, Gatterer H, Rauch S, et al. Performance determinants in short (68 km) and long (121 km) mountain ultra-marathon races. Sportverletzung-Sportschaden. 2020;34(2):7983. PubMed ID: 32252115 doi:10.1055/a-1028-8644

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Knechtle B, Nikolaidis PT. Physiology and pathophysiology in ultra-marathon running. Front Physiol. 2018;9(June):634. doi:10.3389/fphys.2018.00634

  • 30.

    Mertová M, Botek M, Krejčí J, McKune AJ. Heart rate variability recovery after a skyrunning marathon and correlates of performance. Acta Gymnica. 2017;47(4):161170.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Martínez-navarro I, Sánchez-gómez JM, Panizo N, Hernando C, Collado-boira EJ. Cardiac damage biomarkers and heart rate variability following a 118-km mountain race: relationship with performance and recovery. J Sports Sci Med. 2019;18(4):615622. PubMed ID: 31827345

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Peter L, Rüst CA, Knechtle B, Rosemann T, Lepers R. Sex differences in 24-hour ultra-marathon performance – A retrospective data analysis from 1977 to 2012. Clinics. 2014;69(1):3846. PubMed ID: 24473558 doi:10.6061/clinics/2014(01)06

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Robach P, Boisson RC, Vincent L, et al. Hemolysis induced by an extreme mountain ultra-marathon is not associated with a decrease in total red blood cell volume. Scand J Med Sci Sport. 2014;24(1):1827. doi:10.1111/j.1600-0838.2012.01481.x

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 6180 3119 218
Full Text Views 188 89 21
PDF Downloads 218 90 19