Autonomic and Perceptual Responses to Induction of a Ketogenic Diet in Free-Living Endurance Athletes: A Randomized, Crossover Trial

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Ed Maunder
Search for other papers by Ed Maunder in
Current site
Google Scholar
PubMed
Close
,
Deborah K. Dulson
Search for other papers by Deborah K. Dulson in
Current site
Google Scholar
PubMed
Close
, and
David M. Shaw
Search for other papers by David M. Shaw in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: Considerable interindividual heterogeneity has been observed in endurance performance responses following induction of a ketogenic diet (KD). It is plausible that a physiological stress response in the period following the dramatic dietary shift associated with transition to a KD may explain this heterogeneity. Methods: In a randomized, crossover study design, 8 trained male runners completed an incremental exercise test and ran to exhaustion at 70%VO2max before and after a 31-day rigorously controlled habitual diet or KD intervention, and recorded heart rate variability (root mean square of the sum of successive differences in R–R intervals [rMSSD]) upon waking each morning along with the recovery–stress questionnaire for athletes each week. Data were analyzed using linear mixed models. Results: A significant reduction in rMSSD was observed in the KD (−9.77 [4.03] ms, P = .02), along with an increase in day-to-day variability in rMSSD (2.1% [1.0%], P = .03). The reduction in rMSSD in the KD for the subgroup of individuals exhibiting impaired exercise capacity following induction of the KD approached significance (Δ −22 [15] ms, P = .06, N = 4); whereas no effect was observed in those who exhibited unchanged exercise capacity (Δ 5 [18] ms, P = .61, N = 4). No main effects were observed for recovery–stress questionnaire for athletes. Conclusions: Our data suggest those working with endurance athletes transitioning onto a KD may consider using noninvasive, inexpensive resting heart rate variability measures to gain individual-level insights into the likely short-term effects on exercise capacity.

Maunder, Dulson, and Shaw are with the Sports Performance Research Inst New Zealand, Auckland University of Technology, Auckland, New Zealand. Dulson is also with the School of Biomedical, Nutritional, and Sport Sciences, Newcastle University, Newcastle, United Kingdom. Shaw is also with the School of Sport, Exercise, and Nutrition, Massey University, Palmerston North, New Zealand.

Maunder (ed.maunder@aut.ac.nz) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Burke LM. Ketogenic low CHO, high fat diet: the future of elite endurance sport? [published online ahead of print May 2, 2020]. J Physiol. PubMed ID: 32358802 doi:10.1113/JP278928

    • Search Google Scholar
    • Export Citation
  • 2.

    Shaw DM, Merien F, Braakhuis A, Maunder E, Dulson DK. Exogenous ketone supplementation and keto-adaptation for endurance performance: disentangling the effects of two distinct metabolic states. Sport Med. 2020;50(4):641656. PubMed ID: 31820376 doi:10.1007/s40279-019-01246-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Achanta LB, Rae CD. β-Hydroxybutyrate in the brain: one molecule, multiple mechanisms. Neurochem Res. 2017;42(1):3549. PubMed ID: 27826689 doi:10.1007/s11064-016-2099-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Petrick HL, Brunetta HS, Pignanelli C, et al. In vitro ketone-supported mitochondrial respiration is minimal when other substrates are readily available in cardiac and skeletal muscle. J Physiol. 2020;598(21):48694885. PubMed ID: 32735362 doi:10.1113/JP280032

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Dearlove DJ, Harrison OK, Hodson L, Jefferson A, Clarke K, Cox PJ. The effect of blood ketone concentration and exercise intensity on exogenous ketone oxidation rates in athletes [published online ahead of print August 28, 2020]. Med Sci Sports Exerc. PubMed ID: 32868580 doi:10.1249/mss.0000000000002502

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Mey JT, Erickson ML, Axelrod CL, et al. β-Hydroxybutyrate is reduced in humans with obesity-related NAFLD and displays a dose-dependent effect on skeletal muscle mitochondrial respiration in vitro. Am J Physiol—Endocrinol Metab. 2020;319(1):E187E195. PubMed ID: 32396388 doi:10.1152/ajpendo.00058.2020

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Shaw DM, Merien F, Braakhuis A, Maunder E, Dulson DK. Effect of a ketogenic diet on submaximal exercise capacity and efficiency in runners. Med Sci Sports Exerc. 2019;51(10):21352146. PubMed ID: 31033901 doi:10.1249/MSS.0000000000002008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Langfort J, Zarzeczny R, Pilis W, Nazar K, Kaciuba-Uściłko H. The effect of a low-carbohydrate diet on performance, hormonal and metabolic responses to a 30-s bout of supramaximal exercise. Eur J Appl Physiol Occup Physiol. 1997;76(2):128133. PubMed ID: 9272770 doi:10.1007/s004210050224

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Langfort J, Pilis W, Zarzeczny R, Nazar K, Kaciuba-Uściłko H. Effect of low-carbohydrate-ketogenic diet on metabolic and hormonal responses to graded exercise in men. J Physiol Pharmacol. 1996;47(2):361371. PubMed ID: 8807563

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Ryan KK, Packard AEB, Larson KR, et al. Dietary manipulations that induce ketosis activate the HPA axis in male rats and mice: a potential role for fibroblast growth factor-21. Endocrinology. 2018;159(1):400413. PubMed ID: 29077838 doi:10.1210/en.2017-00486

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Plews DJ, Laursen PB, Stanley J, Kilding AE, Buchheit M. Training adaptation and heart rate variability in elite endurance athletes: opening the door to effective monitoring. Sport Med. 2013;43(9):773781. PubMed ID: 23852425 doi:10.1007/s40279-013-0071-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Havemann L, West SJ, Goedecke JH, et al. Fat adaptation followed by carbohydrate loading compromises high-intensity sprint performance. J Appl Physiol. 2006;100:194202. PubMed ID: 16141377 doi:10.1152/japplphysiol.00813.2005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Dostal T, Plews DJ, Hofmann P, Laursen PB, Cipryan L. Effects of a 12-week very-low carbohydrate high-fat diet on maximal aerobic capacity, high-intensity intermittent exercise, and cardiac autonomic regulation: non-randomized parallel-group study. Front Physiol. 2019;10:912. PubMed ID: 31379612 doi:10.3389/fphys.2019.00912

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Burke LM, Ross ML, Garvican-Lewis LA, et al. Low carbohydrate, high fat diet impairs exercise economy and negates the performance benefit from intensified training in elite race walkers. J Physiol. 2017;595(9):27852807. PubMed ID: 28012184 doi:10.1113/JP273230

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Jeukendrup AE, Wallis GA. Measurement of substrate oxidation during exercise by means of gas exchange measurements. Int J Sports Med. 2005;26(Suppl 1):S28S37. PubMed ID: 15702454 doi:10.1055/s-2004-830512

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    De Souza Silveira R, Carlsohn A, Langen G, Mayer F, Scharhag-Rosenberger F. Reliability and day-to-day variability of peak fat oxidation during treadmill ergometry. J Int Soc Sports Nutr. 2016;13(1):4. PubMed ID: 26816497 doi:10.1186/s12970-016-0115-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Shaw DM, Merien F, Braakhuis A, Keaney L, Dulson DK. Adaptation to a ketogenic diet modulates adaptive and mucosal immune markers in trained male endurance athletes. Scand J Med Sci Sport. 2021;31(1):140152. PubMed ID: 32969535 doi:10.1111/sms.13833

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Alghannam AF, Jedrzejewski D, Tweddle M, Gribble H, Bilzon JLJ, Betts JA. Reliability of time to exhaustion treadmill running as a measure of human endurance capacity. Int J Sports Med. 2016;37(3):219223. PubMed ID: 26669250 doi:10.1055/s-0035-1555928

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Borresen J, Lambert MI. The quantification of training load, the training response and the effect on performance. Sport Med. 2009;39(9):779795. PubMed ID: 19691366 doi:10.2165/11317780-000000000-00000

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Borresen J, Lambert MI. Quantifying training load: a comparison of subjective and objective methods. Int J Sports Physiol Perform. 2008;3(1):1630. PubMed ID: 19193951 doi:10.1123/ijspp.3.1.16

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Plews DJ, Scott B, Altini M, Wood M, Kilding AE, Laursen PB. Comparison of heart-rate-variability recording with smartphone photoplethysmography, polar H7 chest strap, and electrocardiography. Int J Sports Physiol Perform. 2017;12(10):13241328. PubMed ID: 28290720 doi:10.1123/ijspp.2016-0668

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Davis H IV, Orzeck T, Keelan P. Psychometric item evaluations of the Recovery-Stress Questionnaire for athletes. Psychol Sport Exerc. 2007;8(6):917938.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Plews DJ, Laursen PB, Kilding AE, Buchheit M. Heart rate variability in elite triathletes, is variation in variability the key to effective training? A case comparison. Eur J Appl Physiol. 2012;112(11):37293741. PubMed ID: 22367011 doi:10.1007/s00421-012-2354-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Javaloyes A, Sarabia JM, Lamberts RP, Moya-Ramon M. Training prescription guided by heart-rate variability in cycling. Int J Sports Physiol Perform. 2019;14(1):2332. PubMed ID: 29809080 doi:10.1123/ijspp.2018-0122

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Javaloyes A, Sarabia JM, Lamberts RP, Plews DJ, Moya-Ramon M. Training prescription guided by heart-rate variability vs. block periodization in well-trained cyclists. J Strength Cond Res. 2019;34(6):15111518. PubMed ID: 31490431 doi:10.1519/JSC.0000000000003337

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Flatt AA, Howells D. Effects of varying training load on heart rate variability and running performance among an Olympic rugby sevens team. J Sci Med Sport. 2019;22(2):222226. PubMed ID: 30055959 doi:10.1016/j.jsams.2018.07.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Webster CC, Noakes TD, Chacko SK, Swart J, Kohn TA, Smith JAH. Gluconeogenesis during endurance exercise in cyclists habituated to a long-term low carbohydrate high-fat diet. J Physiol. 2016;594(15):43894405. PubMed ID: 26918583 doi:10.1113/JP271934

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Lauritsen KM, Søndergaard E, Luong T V., Møller N, Gormsen LC. Acute hyperketonemia does not affect glucose or palmitate uptake in abdominal organs or skeletal muscle. J Clin Endocrinol Metab. 2020;105(6):dgaa122. PubMed ID: 32161953 doi:10.1210/clinem/dgaa122

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Page MA, Williamson DH. Enzymes of ketone-body utilisation in human brain. Lancet. 1971;298(7715):6668. PubMed ID: 4103982 doi:10.1016/s0140-6736(71)92044-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Courchesne-Loyer A, Croteau E, Castellano CA, St-Pierre V, Hennebelle M, Cunnane SC. Inverse relationship between brain glucose and ketone metabolism in adults during short-term moderate dietary ketosis: a dual tracer quantitative positron emission tomography study. J Cereb Blood Flow Metab. 2017;37(7):24852493. PubMed ID: 27629100 doi:10.1177/0271678X16669366

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Amiel SA, Archibald HR, Chusney G, Williams AJK, Gale EAM. Ketone infusion lowers hormonal responses to hypoglycaemia: evidence for acute cerebral utilization of a non-glucose fuel. Clin Sci. 1991;81(2):189194. PubMed ID: 1653662 doi:10.1042/cs0810189

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Puchalska P, Crawford P. Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics. Cell Metab. 2017;25(2):262284. PubMed ID: 28178565 doi:10.1016/j.cmet.2016.12.022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Nicolas M, Vacher P, Martinent G, Mourot L. Monitoring stress and recovery states: structural and external stages of the short version of the RESTQ sport in elite swimmers before championships. J Sport Heal Sci. 2019;8(1):7788. PubMed ID: 30719387 doi:10.1016/j.jshs.2016.03.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Plews DJ, Laursen PB, Kilding AE, Buchheit M. Heart rate variability and training intensity distribution in elite rowers. Int J Sports Physiol Perform. 2014;9:10261032. PubMed ID: 24700160 doi:10.1123/ijspp.2013-0497

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 5561 3026 90
Full Text Views 89 45 4
PDF Downloads 124 51 4