Metabolic Profiles of the 30-15 Intermittent Fitness Test and the Corresponding Continuous Version in Team-Sport Athletes—Elucidating the Role of Inter-Effort Recovery

Click name to view affiliation

Sebastian Kaufmann
Search for other papers by Sebastian Kaufmann in
Current site
Google Scholar
PubMed
Close
,
Ralph Beneke
Search for other papers by Ralph Beneke in
Current site
Google Scholar
PubMed
Close
,
Richard Latzel
Search for other papers by Richard Latzel in
Current site
Google Scholar
PubMed
Close
,
Hanna Pfister
Search for other papers by Hanna Pfister in
Current site
Google Scholar
PubMed
Close
, and
Olaf Hoos
Search for other papers by Olaf Hoos in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: To elucidate the role of inter-effort recovery in shuttle running by comparing the metabolic profiles of the 30-15 Intermittent Fitness Test (30-15IFT) and the corresponding continuous version (30-15IFT-CONT). Methods: Sixteen state-level handball players (age = 23 [3] y, height = 185 [7] cm, weight = 85 [14] kg) completed the 30-15IFT and 30-15IFT-CONT, and speed at the last completed stage (in kilometers per hour) and time to exhaustion (in seconds) were assessed. Furthermore, oxygen uptake (in milliliters per kilogram per minute) and blood lactate were obtained preexercise, during exercise, and until 15 minutes postexercise. Metabolic energy (in kilojoules), metabolic power (in Watts per kilogram), and relative (in percentage) energy contribution of the aerobic (WAER, WAERint), anaerobic lactic (WBLC, WBLCint), and anaerobic alactic (WPCr, WPCrint) systems were calculated by PCr-La-O2 method for 30-15IFT-CONT and 30-15IFT. Results: No difference in peak oxygen uptake was found between 30-15IFT and 30-15IFT-CONT (60.6 [6.6] vs 60.5 [5.1] mL·kg−1·min−1, P = .165, d = 0.20), whereas speed at the last completed stage was higher in 30-15IFT (18.3 [1.4] vs 16.1 [1.0] km·h−1, P < .001, d = 1.17). Metabolic energy was also higher in 30-15IFT (1224.2 [269.6] vs 772.8 [63.1] kJ, P < .001, d = 5.60), and metabolic profiles differed substantially for aerobic (30-15IFT = 67.2 [5.2] vs 30-15IFT-CONT = 85.2% [2.5%], P < .001, d = −4.01), anaerobic lactic (30-15IFT = 4.4 [1.4] vs 30-15IFT-CONT = 6.2% [1.8%], P < .001, d = −1.04), and anaerobic alactic (30-15IFT = 28.4 [4.7] vs 30-15IFT-CONT = 8.6% [2.1%], P < .001, d = 5.43) components. Conclusions: Both 30-15IFT and 30-15IFT-CONT are mainly fueled by aerobic energy, but their metabolic profiles differ substantially in both aerobic and anaerobic alactic energy contribution. Due to the presence of inter-effort recovery, intermittent shuttle runs rely to a higher extent on anaerobic alactic energy and a fast, aerobic replenishment of PCr during the short breaks between shuttles.

Kaufmann, Pfister, and Hoos are with the Center for Sports and Physical Education, Faculty of Human Sciences, Julius-Maximilians-University Wuerzburg, Wuerzburg, Germany. Beneke is with the Dept of Medicine, Training & Health, Inst of Sports Science, Philipps-University Marburg, Marburg, Germany. Latzel is with the Faculty of Applied Health Sciences, Deggendorf Inst of Technology, Deggendorf, Germany.

Kaufmann (sebastian.kaufmann@uni-wuerzburg.de) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Zadro I, Sepulcri L, Lazzer S, Fregolent R, Zamparo P. A protocol of intermittent exercise (shuttle runs) to train young basketball players. J Strength Cond Res. 2011;25(6):17671773. PubMed ID: 21358430

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Buchheit M. Le 30–15 Intermittent Fitness Test: un nouveau test de terrain spécifiquement dédié aux joueurs de sport collectif pour la détermination d’une vitesse maximale aérobie intermittente. Approches du Handball. 2005;87:2734.

    • Search Google Scholar
    • Export Citation
  • 3.

    Leger LA, Lambert J. A maximal multistage 20-m shuttle run test to predict VO2max. Eur J Appl Phys Occup Physiol. 1982;49(1):112. PubMed ID: 720192

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Krustrup P, Mohr M, Amstrup T, et al. The yo-yo intermittent recovery test: physiological response, reliability, and validity. Med and Sci Sports Exerc. 2003;35(4):697705. PubMed ID: 12673156

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Krustrup P, Mohr M, Nybo L, Jensen JM, Nielsen JJ, Bangsbo J. The Yo-Yo IR2 test: physiological response, reliability, and application to elite soccer. Med Sci Sports Exerc. 2006;38(9):16661673. PubMed ID: 16960529

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Buchheit M. The 30–15 intermittent fitness test: accuracy for individualizing interval training of young intermittent sport players. J Strength Cond Res. 2008;22(2):365374. PubMed ID: 18550949

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Lemmink K, Verheijen R, Visscher C. The discriminative power of the Interval Shuttle Run Test and the Maximal Multistage Shuttle Run Test for playing level of soccer. J Sports Med Phys Fit. 2004;44(3):233239. PubMed ID: 15756160

    • Search Google Scholar
    • Export Citation
  • 8.

    Bangsbo J, Iaia FM, Krustrup P. The Yo-Yo intermittent recovery test: a useful tool for evaluation of physical performance in intermittent sports. Sports Med. 2008;38(1):3751. PubMed ID: 18081366

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Castagna C, Impellizzeri FM, Rampinini E, D’Ottavio S, Manzi V. The Yo–Yo intermittent recovery test in basketball players. J Sci Med Sport. 2008;11(2):202208. PubMed ID: 17574917

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Buchheit M, Laursen P, Millet G, Pactat F, Ahmaidi S. Predicting intermittent running performance: critical velocity versus endurance index. Int. J. Sports Med. 2008;29(04):307315. PubMed ID: 17879881

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Buchheit M. The 30–15 intermittent fitness test: 10 year review. Myorobie J. 2010;1(9):278.

  • 12.

    Buchheit M, Rabbani A. The 30–15 intermittent fitness test versus the yo-yo intermittent recovery test level 1: relationship and sensitivity to training. Int J Sports Physiolo Perform. 2014;9(3):522524. PubMed ID: 23475226

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Grgic J, Oppici L, Mikulic P, Bangsbo J, Krustrup P, Pedisic Z. Test–retest reliability of the Yo-Yo Test: a systematic review. Sports Med. 2019;49(10):15471557. PubMed ID: 31270753

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Kaufmann S, Hoos O, Kuehl T, et al. Energetic profiles of the Yo-Yo intermittent recovery tests 1 and 2. Int J Sports Physiolo Perform. 2020:15(10):14001405. PubMed ID: 32659742

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Haydar B, Haddad HA, Ahmaidi S, Buchheit M. Assessing inter-effort recovery and change of direction ability with the 30–15 intermittent fitness test. J Sports Sci Med. 2011;10(2):346354. PubMed ID: 24149882

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Latzel R, Hoos O, Stier S, et al. Energetic profile of the basketball exercise simulation test in junior elite players. Int J Sports Physiolo Perform. 2017:118. PubMed ID: 29182413

    • Search Google Scholar
    • Export Citation
  • 17.

    Zamparo P, Bolomini F, Nardello F, Beato M. Energetics (and kinematics) of short shuttle runs. Eur J Appl Physiol. 2015;115(9):19851994. PubMed ID: 25963378

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Zamparo P, Zadro I, Lazzer S, Beato M, Sepulcri L. Energetics of shuttle runs: the effects of distance and change of direction. Int J Sports Physiolo Perform. 2014;9(6):10331039. PubMed ID: 24700201

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Buglione A, Di Prampero PE. The energy cost of shuttle running. Eur J Appl Physiol. 2013;113(6):15351543. PubMed ID: 23299795

  • 20.

    Abdelkrim NB, El Fazaa S, El Ati J. Time–motion analysis and physiological data of elite under-19-year-old basketball players during competition. Br J Sports Med.. 2007;41(2):6975. PubMed ID: 17138630

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Bradley PS, Sheldon W, Wooster B, Olsen P, Boanas P, Krustrup P. High-intensity running in English FA Premier League soccer matches. J Sports Sci. 2009;27(2):159168. PubMed ID: 19153866

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Póvoas SC, Seabra AF, Ascensão AA, Magalhães J, Soares JM, Rebelo AN. Physical and physiological demands of elite team handball. J Strength Cond Res. 2012;26(12):33653375. PubMed ID: 22222325

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Beneke R, Pollmann C, Bleif I, Leithauser RM, Hutler M. How anaerobic is the Wingate Anaerobic Test for humans? Eur J Appl Physiol.. 2002;87(4–5):388392. PubMed ID: 12172878

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Davis P, Leithäuser RM, Beneke R. The energetics of semicontact 3× 2-min amateur boxing. Int J Sports Physiolo Perform. 2014;9(2):233239. PubMed ID: 24572964

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Artioli GG, Bertuzzi RC, Roschel H, Mendes SH, Lancha AH, Jr., Franchini E. Determining the contribution of the energy systems during exercise. J Vis Exp. 2012;61:1–5. PubMed ID: 22453254

    • Search Google Scholar
    • Export Citation
  • 26.

    Buchheit M, Brown M. Pre-season fitness testing in elite soccer: integrating the 30–15 Intermittent Fitness Test into the weekly microcycle. Sport Performance & Science Reports Web site. https://sportperfsci.com/pre-season-fitness-testing-in-elite-soccer-integrating-the-30-15-intermittent-fitness-test-into-the-weekly-microcycle/. Published 2020. Accessed November 10, 2020.

    • Search Google Scholar
    • Export Citation
  • 27.

    Beneke R, Beyer T, Jachner C, Erasmus J, Hutler M. Energetics of karate kumite. Eur J Appl Physiol. 2004;92(4–5):518523. PubMed ID: 15138826

  • 28.

    Gastin PB. Energy system interaction and relative contribution during maximal exercise. Sports Med. 2001;31(10):725741. PubMed ID: 11547894

  • 29.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. PubMed ID: 19092709

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Batterham AM, Cox AJ. Spreadsheets for analysis of controlled trials, with adjustment for a subject characteristic. Sportscience. 2006;10:4651.

    • Search Google Scholar
    • Export Citation
  • 31.

    Buchheit M, Al Haddad H, Millet GP, Lepretre PM, Newton M, Ahmaidi S. Cardiorespiratory and cardiac autonomic responses to 30–15 intermittent fitness test in team sport players. J Strength Cond Res. 2009;23(1):93100. PubMed ID: 19057401

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Spencer MR, Gastin PB. Energy system contribution during 200- to 1500-m running in highly trained athletes. Med Sci Sports Exerc. 2001;33(1):157162. PubMed ID: 11194103

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Li Y, Niessen M, Chen X, Hartmann U. Method-induced differences of energy contributions in women’s kayaking. Int J Sports Physiol Perform. 2017;20(00):15. PubMed ID: 28338361

    • Search Google Scholar
    • Export Citation
  • 34.

    Bertuzzi RC, Nascimento EM, Urso RP, Damasceno M, Lima-Silva AE. Energy system contributions during incremental exercise test. J Sports Sci Med. 2013;12(3):454460. PubMed ID: 24149151

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Baker JS, McCormick MC, Robergs RA. Interaction among skeletal muscle metabolic energy systems during intense exercise. J Nutr Metabol. 2010;2010;1–13. PubMed ID: 21188163

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Xu F, Rhodes EC. Oxygen uptake kinetics during exercise. Sports Med. 1999;27(5):313327. PubMed ID: 10368878

  • 37.

    Jones AM, Burnley M. Oxygen uptake kinetics: an underappreciated determinant of exercise performance. Int J Sports Physiol Perform. 2009;4(4):524532. PubMed ID: 20029103

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Beneke R, Hutler M, Jung M, Leithauser RM. Modeling the blood lactate kinetics at maximal short-term exercise conditions in children, adolescents, and adults. J Appl Physiol. 2005;99(2):499504. PubMed ID: 16020438

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Brooks GA. Lactate production under fully aerobic conditions: the lactate shuttle during rest and exercise. Fed Proc. 1986;45(13):2924. PubMed ID: 3536591

    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 4735 1007 89
Full Text Views 89 24 3
PDF Downloads 101 11 1