Internal Training Load Affects Day-After-Pretraining Perceived Fatigue in Female Volleyball Players

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Alexandru Nicolae Ungureanu
Search for other papers by Alexandru Nicolae Ungureanu in
Current site
Google Scholar
PubMed
Close
,
Corrado Lupo
Search for other papers by Corrado Lupo in
Current site
Google Scholar
PubMed
Close
,
Gennaro Boccia
Search for other papers by Gennaro Boccia in
Current site
Google Scholar
PubMed
Close
, and
Paolo Riccardo Brustio
Search for other papers by Paolo Riccardo Brustio in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: The primary aim of this study was to evaluate whether the internal (session rating of perceived exertion [sRPE] and Edwards heart-rate-based method) and external training load (jumps) affect the presession well-being perception on the day after (ie, +22 h), according to age and tactical position, in elite (ie, Serie A2) female volleyball training. Methods: Ten female elite volleyball players (age = 23 [4] y, height = 1.82 [0.04] m, body mass = 73.2 [4.9] kg) had their heart rate monitored during 13 team (115 individual) training sessions (duration: 101 [8] min). Mixed-effect models were applied to evaluate whether sRPE, Edwards method, and jumps were correlated (P ≤ .05) to Hooper index factors (ie, perceived sleep quality/disorders, stress level, fatigue, and delayed-onset muscle soreness) in relation to age and tactical position (ie, hitters, central blockers, opposites, and setters). Results: The results showed a direct relationship between sRPE (P < .001) and presession well-being perception 22 hours apart, whereas the relationship was the inverse for Edwards method internal training load. Age, as well as the performed jumps, did not affect the well-being perception of the day after. Finally, central blockers experienced a higher delayed-onset muscle soreness than hitters (P = .003). Conclusions: Findings indicated that female volleyball players’ internal training load influences the pretraining well-being status on the day after (+ 22 h). Therefore, coaches can benefit from this information to accurately implement periodization in a short-term perspective and to properly adopt recovery strategies in relation to the players’ well-being status.

The authors are with the NeuroMuscular Function Research Group, Dept of Medical Sciences, and Boccia, also the Dept. of Clinical and Biological Sciences, School of Exercise & Sport Sciences (SUISM), University of Turin, Turin, Italy.

Lupo (corrado.lupo@unito.it) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Lima RF, Lima RF, Lima RF, et al. External and internal load and their effects on professional volleyball training. Int J Sports Med. 2020;41(7):468474. PubMed ID: 32059245 doi:10.1055/a-1087-2183

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    McLaren SJ, Macpherson TW, Coutts AJ, Hurst C, Spears IR, Weston M. The relationships between internal and external measures of training load and intensity in team sports: a meta-analysis. Sport Med. 2018;48:641658. doi:10.1007/s40279-017-0830-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    García-de-Alcaraz A, Ramírez-Campillo R, Rivera-Rodríguez M, Romero-Moraleda B. Analysis of jump load during a volleyball season in terms of player role. J Sci Med Sport. 2020; 23(10):P973978. doi:10.1016/j.jsams.2020.03.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Sheppard JM, Gabbett TJ, Stanganelli LCR. An analysis of playing positions in elite men’s volleyball: considerations for competition demands and physiologic characteristics. J Strength Cond Res. 2009;23(6):P18581866. doi:10.1519/JSC.0b013e3181b45c6a

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Wnorowski K, Aschenbrenner P, Skrobecki J, Stech M. An assessment of a volleyball player’s loads in a match on the basis of the number and height of jumps measured in real-time conditions. Balt J Heal Phys Act. 2013;5(2):199–206. doi:10.2478/bjha-2013-0019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Lupo C, Capranica L, Tessitore A. The validity of the session-RPE method for quantifying training load in water polo. Int J Sports Physiol Perform. 2014;9(4):656660. PubMed ID: 24231176 doi:10.1123/IJSPP.2013-0297

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Lupo C, Tessitore A, Gasperi L, Gomez MAR. Session-RPE for quantifying the load of different youth basketball training sessions. Biol Sport. 2017;34:1117. PubMed ID: 28416891 doi:10.5114/biolsport.2017.63381

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Foster C, Florhaug JA, Franklin J, et al. A new approach to monitoring exercise training/Une Nouvelle approche pour conduire l’entrainement. J Strength Cond Res. 2001;15(1):109115. PubMed ID: 11708692

    • Search Google Scholar
    • Export Citation
  • 9.

    Foster C, Hector LL, Welsh R, Schrager M, Green MA, Snyder AC. Effects of specific versus cross-training on running performance. Eur J Appl Physiol Occup Physiol. 1995;70:367372. PubMed ID: 7649149 doi:10.1007/BF00865035

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Edwards S. The heart rate monitor book. Med Sci Sport Exerc. 1994;26(5):647. doi:10.1249/00005768-199405000-00020

  • 11.

    Lupo C, Ungureanu AN, Frati R, Panichi M, Grillo S, Brustio PR. Player session rating of perceived exertion: a more valid tool than coaches’ ratings to monitor internal training load in elite youth female basketball. Int J Sports Physiol Perform. 2019;15(4):548553. doi:10.1123/ijspp.2019-0248

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Lupo C, Ungureanu AN, Brustio PR. Session-RPE is a valuable internal load evaluation method in beach volleyball for both genders, elite and amateur players, conditioning and technical sessions, but limited for tactical training and games. Kinesiology. 2020;52(1):3038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    de Freitas VH, Nakamura FY, Pereira LA, de Andrade FC, Coimbra DR, Bara Filho MG. Pre-competitive physical training and markers of performance, stress and recovery in young volleyball athletes. Rev Bras Cineantropometria e Desempenho Hum. 2014;17(1):2015. doi:10.5007/1980-0037.2015v17n1p31

    • Search Google Scholar
    • Export Citation
  • 14.

    Aoki MS, Arruda AFS, Freitas CG, et al. Monitoring training loads, mood states, and jump performance over two periodized training mesocycles in elite young volleyball players. Int J Sport Sci Coach. 2017;12(1):130137. doi:10.1177/1747954116684394

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Mendes B, Palao JM, Silvério A, et al. Daily and weekly training load and wellness status in preparatory, regular and congested weeks: a season-long study in elite volleyball players. Res Sport Med. 2018;26(4):462473. doi:10.1080/15438627.2018.1492393

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Saw AE, Main LC, Gastin PB. Monitoring the athlete training response: subjective self-reported measures trump commonly used objective measures: a systematic review. Br J Sports Med. 2016;50(5):281291. PubMed ID: 26423706 doi:10.1136/bjsports-2015-094758

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Gallo TF, Cormack SJ, Gabbett TJ, Lorenzen CH. Pre-training perceived wellness impacts training output in Australian football players. J Sports Sci. 2016;34(15):14451451. PubMed ID: 26637525 doi:10.1080/02640414.2015.1119295

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Clemente FM, Mendes B, Nikolaidis PT, Calvete F, Carriço S, Owen AL. Internal training load and its longitudinal relationship with seasonal player wellness in elite professional soccer. Physiol Behav. 2017;179(1):262267. doi:10.1016/j.physbeh.2017.06.021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Ungureanu AN, Brustio PR, Boccia G, Rainoldi A, Lupo C. Effects of presession well-being perception on internal training load in female volleyball players. Int J Sports Physiol Perform. 2021;16(5):622–627. doi:10.1123/ijspp.2020-0387

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Clemente FM, Silva AF, Clark CCT, et al. Analyzing the seasonal changes and relationships in training load and wellness in elite volleyball players. Int J Sports Physiol Perform. 2020;15(5):731740. PubMed ID: 32015214 doi:10.1123/ijspp.2019-0251

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Debien PB, Mancini M, Coimbra DR, De Freitas DGS, Miranda R, Bara Filho MG. Monitoring training load, recovery, and performance of brazilian professional volleyball players during a season. Int J Sports Physiol Perform. 2018;13(9):11821189. PubMed ID: 29584530 doi:10.1123/ijspp.2017-0504

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Freitas VH, Nakamura FY, Miloski B, Samulski D, Bara-Filho MG. Sensitivity of physiological and psychological markers to training load intensification in volleyball players. J Sport Sci Med. 2014;13(3):571.

    • Search Google Scholar
    • Export Citation
  • 23.

    Dipla K, Tsirini T, Zafeiridis A, et al. Fatigue resistance during high-intensity intermittent exercise from childhood to adulthood in males and females. Eur J Appl Physiol. 2009;106:645653. PubMed ID: 19404672 doi:10.1007/s00421-009-1058-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Ratel S, Williams CA, Oliver J, Armstrong N. Effects of age and mode of exercise on power output profiles during repeated sprints. Eur J Appl Physiol. 2004;94:204210. doi:10.1007/s00421-004-1081-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Lidor R, Ziv G. Physical and physiological attributes of female volleyball players—a review. J Strength Cond Res. 2010;24(7):19631973. PubMed ID: 20543736 doi:10.1519/JSC.0b013e3181ddf835

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15(2):155163. PubMed ID: 27330520 doi:10.1016/j.jcm.2016.02.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Hooper SL, Mackinnon LT. Monitoring overtraining in athletes: recommendations. Sport Med. 1995;20:321327. doi:10.2165/00007256-199520050-00003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Hopkins WG. A new view of statistics: a scale of magnitudes for effect statistics. Sportscience. 2002. https://www.sportsci.org/resource/stats/effectmag.html. Retrieved January 1, 2021.

    • Search Google Scholar
    • Export Citation
  • 29.

    Akinwande MO, Dikko HG, Samson A. Variance inflation factor: as a condition for the inclusion of suppressor variable(s) in regression analysis. Open J Stat. 2015;5(7):754767. doi:10.4236/ojs.2015.57075

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Cook RD. Detection of influential observation in linear regression. Technometrics. 1977;19(1):1518. doi:10.1080/00401706.1977.10489493

    • Search Google Scholar
    • Export Citation
  • 31.

    Buchheit M. Monitoring training status with HR measures: do all roads lead to Rome? Front Physiol. 2014;5:73. PubMed ID: 24578692 doi:10.3389/fphys.2014.00073

  • 32.

    Faff J, Sitkowski D, Ładyga M, Klusiewicz A, Borkowski L, Starczewska-Czapowska J. Maximal heart rate in athletes. Biol Sport. 2007;24(2):129.

    • Search Google Scholar
    • Export Citation
  • 33.

    Scanlan AT, Fox JL, Poole JL, et al. A comparison of traditional and modified Summated-Heart-Rate-Zones models to measure internal training load in basketball players. Meas Phys Educ Exerc Sci. 2018;22(4):303309. doi:10.1080/1091367X.2018.1445089

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Howatson G, Hoad M, Goodall S, Tallent J, Bell PG, French DN. Exercise-induced muscle damage is reduced in resistance-trained males by branched chain amino acids: a randomized, double-blind, placebo controlled study. J Int Soc Sports Nutr. 2012;9:20. PubMed ID: 22569039 doi:10.1186/1550-2783-9-20

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Dupuy O, Douzi W, Theurot D, Bosquet L, Dugué B. An evidence-based approach for choosing post-exercise recovery techniques to reduce markers of muscle damage, soreness, fatigue, and inflammation: a systematic review with meta-analysis. Front Physiol. 2018;9:403. PubMed ID: 29755363 doi:10.3389/fphys.2018.00403

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3901 2556 34
Full Text Views 35 16 2
PDF Downloads 51 19 1