Upper-Body Resistance Training Following Soccer Match Play: Compatible, Complementary, or Contraindicated?

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: During heavily congested schedules, professional soccer players can experience exacerbated fatigue responses, which are thought to contribute to an increased risk of injury. Given that match-induced residual fatigue can last up to 72 hours, many coaches naturally prioritize recovery in the days immediately following match day. While it is intuitive for coaches and training staff to decrease the amount of auxiliary training practices to focus on recovery, prescribing upper-body resistance training on the day after match play has recently emerged as a specific training modality in this context. While these sessions may be implemented to increase training stimulus, there are limited data available regarding the efficacy of such a practice to improve recovery kinetics. Methods: In this narrative review, the authors look at the theoretical implications of performing upper-body resistance training on the day after match play on the status of various physiological and psychological systems, including neuromuscular, metabolic, hormonal, perceptual, and immunological recovery. Results: The available evidence suggests that in most cases this practice, as currently implemented (ie, low volume, low intensity), is unlikely to be complementary (ie, does not accelerate recovery) but is potentially compatible (ie, does not impair recovery). Conclusion: Overall, because the perception of such sessions may be player dependent, their programming requires an individualized approach and should take into account match dynamics (eg, fixture scheduling, playing time, travel).

Sabag is with the NICM Health Research Inst, Western Sydney University, Westmead, NSW, Australia. Sabag and Lovell are with the School of Health Sciences, Western Sydney University, Campbelltown, NSW, Australia. Walsh is with the Research Inst for Sport and Exercise Science, Liverpool John Moores University, Liverpool, United Kingdom. Grantham is with the Sports Medicine and Science Dept, Newcastle United Football Club, Newcastle, United Kingdom. Lacome is with the Performance Dept, Paris Saint-Germain Football Club, Saint-Germain-En-Laye, France. Lacome and Buchheit are with the Laboratory of Sport, Expertise and Performance (EA 7370), Research Dept, French Institute of Sport (INSEP), Paris, France. Buchheit is also with the Inst for Health and Sport, Victoria University, Melbourne, VIC, Australia, and Kitman Labs, Dublin, Ireland.

Buchheit (mb@martin-buchheit.net) is corresponding author.
  • 1.

    Lago-Penas C, Rey E, Lago-Ballesteros J, Casais L, Dominguez E. The influence of a congested calendar on physical performance in elite soccer. J Strength Cond Res. 2011;25(8):21112117. doi:10.1519/JSC.0b013e3181eccdd2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Moreira A, Bradley P, Carling C, et al. Effect of a congested match schedule on immune-endocrine responses, technical performance and session-RPE in elite youth soccer players. J Sports Sci. 2016;34(24):22552261. doi:10.1080/02640414.2016.1205753

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Bengtsson H, Ekstrand J, Waldén M, Hägglund M. Muscle injury rate in professional football is higher in matches played within 5 days since the previous match: a 14-year prospective study with more than 130 000 match observations. Br J Sports Med. 2018;52(17):11161122. doi:10.1136/bjsports-2016-097399

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Enoka RM, Duchateau J. Translating fatigue to human performance. Med Sci Sports Exerc. 2016;48(11):22282238. doi:10.1249/MSS.0000000000000929

  • 5.

    Thompson CJ, Noon M, Towlson C, et al. Understanding the presence of mental fatigue in English academy soccer players. J Sports Sci. 2020;38(13):15241530. doi:10.1080/02640414.2020.1746597

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Silva JR, Rumpf MC, Hertzog M, et al. Acute and residual soccer match-related fatigue: a systematic review and meta-analysis. Sports Med. 2018;48(3):539583. doi:10.1007/s40279-017-0798-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Silva JR, Ascensao A, Marques F, Seabra A, Rebelo A, Magalhaes J. Neuromuscular function, hormonal and redox status and muscle damage of professional soccer players after a high-level competitive match. Eur J Appl Physiol. 2013;113(9):21932201. doi:10.1007/s00421-013-2633-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Cross R, Siegler J, Marshall P, Lovell R. Scheduling of training and recovery during the in-season weekly micro-cycle: insights from team sport practitioners. Eur J Sport Sci. 2019;19(10):12871296. doi:10.1080/17461391.2019.1595740

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Nedelec M, McCall A, Carling C, Legall F, Berthoin S, Dupont G. Recovery in soccer: part II-recovery strategies. Sports Med. 2013;43(1):922. doi:10.1007/s40279-012-0002-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Andersson H, Raastad T, Nilsson J, Paulsen G, Garthe I, Kadi F. Neuromuscular fatigue and recovery in elite female soccer: effects of active recovery. Med Sci Sports Exerc. 2008;40(2):372380. doi:10.1249/mss.0b013e31815b8497

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Dupuy O, Douzi W, Theurot D, Bosquet L, Dugue B. An evidence-based approach for choosing post-exercise recovery techniques to reduce markers of muscle damage, soreness, fatigue, and inflammation: a systematic review with meta-analysis. Front Physiol. 2018;9:403. doi:10.3389/fphys.2018.00403

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Kraemer WJ, Ratamess NA. Hormonal responses and adaptations to resistance exercise and training. Sports Med. 2005;35(4):339361. doi:10.2165/00007256-200535040-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Abaidia AE, Delecroix B, Leduc C, et al. Effects of a strength training session after an exercise inducing muscle damage on recovery kinetics. J Strength Cond Res. 2017;31(1):115125. doi:10.1519/JSC.0000000000001479

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    McMaster DT, Gill N, Cronin J, McGuigan M. The development, retention and decay rates of strength and power in elite rugby union, rugby league and American football: a systematic review. Sports Med. 2013;43(5):367384. doi:10.1007/s40279-013-0031-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Stolen T, Chamari K, Castagna C, Wisloff U. Physiology of soccer: an update. Sports Med. 2005;35(6):501536. doi:10.2165/00007256-200535060-00004

  • 16.

    Cardoso Marques MA, Gonzalez-Badillo JJ. In-season resistance training and detraining in professional team handball players. J Strength Cond Res. 2006;20(3):563571. doi:10.1519/R-17365.1

    • Search Google Scholar
    • Export Citation
  • 17.

    Zatsiorsky V, Kraemer W. Science and Practice of Strength Training. 2nd ed. Champaign, IL: Human Kinetics; 2006.

  • 18.

    Wan JJ, Qin Z, Wang PY, Sun Y, Liu X. Muscle fatigue: general understanding and treatment. Exp Mol Med. 2017;49(10):e384. doi:10.1038/emm.2017.194

  • 19.

    Nedelec M, McCall A, Carling C, Legall F, Berthoin S, Dupont G. Recovery in soccer: part I – post-match fatigue and time course of recovery. Sports Med. 2012;42(12):9971015. doi:10.2165/11635270-000000000-00000

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Taylor JL, Amann M, Duchateau J, Meeusen R, Rice CL. Neural contributions to muscle fatigue: from the brain to the muscle and back again. Med Sci Sports Exerc. 2016;48(11):22942306. doi:10.1249/MSS.0000000000000923

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Brownstein CG, Dent JP, Parker P, et al. Etiology and recovery of neuromuscular fatigue following competitive soccer match-play. Front Physiol. 2017;8:831. doi:10.3389/fphys.2017.00831

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Girard O, Nybo L, Mohr M, Racinais S. Plantar flexor neuromuscular adjustments following match-play football in hot and cool conditions. Scand J Med Sci Sports. 2015;25(suppl 1):154163. doi:10.1111/sms.12371

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Rampinini E, Bosio A, Ferraresi I, Petruolo A, Morelli A, Sassi A. Match-related fatigue in soccer players. Med Sci Sports Exerc. 2011;43(11):21612170. doi:10.1249/MSS.0b013e31821e9c5c

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Minett GM, Duffield R. Is recovery driven by central or peripheral factors? A role for the brain in recovery following intermittent-sprint exercise. Front Physiol. 2014;5:24. doi:10.3389/fphys.2014.00024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Thomas K, Dent J, Howatson G, Goodall S. Etiology and recovery of neuromuscular fatigue after simulated soccer match play. Med Sci Sports Exerc. 2017;49(5):955964. doi:10.1249/MSS.0000000000001196

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Hawkins RD, Hulse MA, Wilkinson C, Hodson A, Gibson M. The association football medical research programme: an audit of injuries in professional football. Br J Sports Med. 2001;35(1):4347. doi:10.1136/bjsm.35.1.43

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Lovell R, Whalan M, Marshall PWM, Sampson JA, Siegler JC, Buchheit M. Scheduling of eccentric lower limb injury prevention exercises during the soccer micro-cycle: which day of the week? Scand J Med Sci Sports. 2018;28(10):22162225. doi:10.1111/sms.13226

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Baird MF, Graham SM, Baker JS, Bickerstaff GF. Creatine-kinase- and exercise-related muscle damage implications for muscle performance and recovery. J Nutr Metab. 2012;2012:960363. doi:10.1155/2012/960363

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Giboin LS, Amiri E, Bertschinger R, Gruber M. Active recovery affects the recovery of the corticospinal system but not of muscle contractile properties. PLoS One. 2018;13(5):e0197339. doi:10.1371/journal.pone.0197339

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Pinar S, Kaya F, Bicer B, Erzeybek MS, Cotuk HB. Different recovery methods and muscle performance after exhausting exercise: comparison of the effects of electrical muscle stimulation and massage. Biol Sport. 2012;29(4):269275. doi:10.5604/20831862.1019664

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Marshall PW, Metcalf E, Hagstrom AD, Cross R, Siegler JC, Enoka RM. Changes in fatigue are the same for trained men and women after resistance exercise. Med Sci Sports Exerc. 2020;52(1):196204. doi:10.1249/MSS.0000000000002103

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Marshall PWM, Cross R, Haynes M. The fatigue of a full body resistance exercise session in trained men. J Sci Med Sport. 2018;21(4):422426. doi:10.1016/j.jsams.2017.06.020

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Thomas K, Brownstein CG, Dent J, Parker P, Goodall S, Howatson G. Neuromuscular fatigue and recovery after heavy resistance, jump, and sprint training. Med Sci Sports Exerc. 2018;50(12):25262535. doi:10.1249/MSS.0000000000001733

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Hargreaves M. Carbohydrate and lipid requirements of soccer. J Sports Sci. 1994;12(suppl 1):S13S16. doi:10.1080/02640414.1994.12059273

  • 35.

    Bangsbo J, Iaia FM, Krustrup P. Metabolic response and fatigue in soccer. Int J Sports Physiol Perform. 2007;2(2):111127. doi:10.1123/ijspp.2.2.111

  • 36.

    Krustrup P, Mohr M, Steensberg A, Bencke J, Kjaer M, Bangsbo J. Muscle and blood metabolites during a soccer game: implications for sprint performance. Med Sci Sports Exerc. 2006;38(6):11651174. doi:10.1249/01.mss.0000222845.89262.cd

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Balsom PD, Gaitanos GC, Soderlund K, Ekblom B. High-intensity exercise and muscle glycogen availability in humans. Acta Physiol Scand. 1999;165(4):337345. doi:10.1046/j.1365-201x.1999.00517.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Burke LM, van Loon LJC, Hawley JA. Postexercise muscle glycogen resynthesis in humans. J Appl Physiol. 2017;122(5):10551067. doi:10.1152/japplphysiol.00860.2016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Krustrup P, Ortenblad N, Nielsen J, et al. Maximal voluntary contraction force, SR function and glycogen resynthesis during the first 72 h after a high-level competitive soccer game. Eur J Appl Physiol. 2011;111(12):29872995. doi:10.1007/s00421-011-1919-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Gunnarsson TP, Bendiksen M, Bischoff R, et al. Effect of whey protein- and carbohydrate-enriched diet on glycogen resynthesis during the first 48 h after a soccer game. Scand J Med Sci Sports. 2013;23(4):508515. doi:10.1111/j.1600-0838.2011.01418.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Costill DL, Pascoe DD, Fink WJ, Robergs RA, Barr SI, Pearson D. Impaired muscle glycogen resynthesis after eccentric exercise. J Appl Physiol. 1990;69(1):4650. doi:10.1152/jappl.1990.69.1.46

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Anderson L, Naughton RJ, Close GL, et al. Daily distribution of macronutrient intakes of professional soccer players from the English Premier League. Int J Sport Nutr Exerc Metab. 2017;27(6):491498. doi:10.1123/ijsnem.2016-0265

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Bartlett JD, Hawley JA, Morton JP. Carbohydrate availability and exercise training adaptation: too much of a good thing? Eur J Sport Sci. 2015;15(1):312. doi:10.1080/17461391.2014.920926

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Haff GG, Koch AJ, Potteiger JA, et al. Carbohydrate supplementation attenuates muscle glycogen loss during acute bouts of resistance exercise. Int J Sport Nutr Exerc Metab. 2000;10(3):326339. doi:10.1123/ijsnem.10.3.326

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Camera DM, West DW, Burd NA, et al. Low muscle glycogen concentration does not suppress the anabolic response to resistance exercise. J Appl Physiol. 2012;113(2):206214. doi:10.1152/japplphysiol.00395.2012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Murray B, Rosenbloom C. Fundamentals of glycogen metabolism for coaches and athletes. Nutr Rev. 2018;76(4):243259. doi:10.1093/nutrit/nuy001

  • 47.

    Pascoe DD, Costill DL, Fink WJ, Robergs RA, Zachwieja JJ. Glycogen resynthesis in skeletal muscle following resistive exercise. Med Sci Sports Exerc. 1993;25(3):349354. doi:10.1249/00005768-199303000-00009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Choi D, Cole KJ, Goodpaster BH, Fink WJ, Costill DL. Effect of passive and active recovery on the resynthesis of muscle glycogen. Med Sci Sports Exerc. 1994;26(8):992996. doi:10.1249/00005768-199408000-00010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Handelsman DJ, Hirschberg AL, Bermon S. Circulating testosterone as the hormonal basis of sex differences in athletic performance. Endocr Rev. 2018;39(5):803829. doi:10.1210/er.2018-00020

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Ahtiainen JP, Nyman K, Huhtaniemi I, et al. Effects of resistance training on testosterone metabolism in younger and older men. Exp Gerontol. 2015;69:148158. doi:10.1016/j.exger.2015.06.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Ispirlidis I, Fatouros IG, Jamurtas AZ, et al. Time-course of changes in inflammatory and performance responses following a soccer game. Clin J Sport Med. 2008;18(5):423431. doi:10.1097/JSM.0b013e3181818e0b

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Slimani M, Baker JS, Cheour F, Taylor L, Bragazzi NL. Steroid hormones and psychological responses to soccer matches: insights from a systematic review and meta-analysis. PLoS One. 2017;12(10):e0186100. doi:10.1371/journal.pone.0186100

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Wood RI, Stanton SJ. Testosterone and sport: current perspectives. Horm Behav. 2012;61(1):147155. doi:10.1016/j.yhbeh.2011.09.010

  • 54.

    Cumming DC, Quigley ME, Yen SS. Acute suppression of circulating testosterone levels by cortisol in men. J Clin Endocrinol Metab. 1983;57(3):671673. doi:10.1210/jcem-57-3-671

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Filaire E, Lac G, Pequignot JM. Biological, hormonal, and psychological parameters in professional soccer players throughout a competitive season. Percept Mot Skills. 2003;97(3 pt 2):10611072. doi:10.2466/pms.2003.97.3f.1061

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    van Paridon KN, Timmis MA, Nevison CM, Bristow M. The anticipatory stress response to sport competition; a systematic review with meta-analysis of cortisol reactivity. BMJ Open Sport Exer Med. 2017;3(1):e000261. doi:10.1136/bmjsem-2017-000261

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 57.

    Kreher JB, Schwartz JB. Overtraining syndrome: a practical guide. Sports Health. 2012;4(2):128138. doi:10.1177/1941738111434406.

  • 58.

    Kraemer WJ, French DN, Paxton NJ, et al. Changes in exercise performance and hormonal concentrations over a big ten soccer season in starters and nonstarters. J Strength Cond Res. 2004;18(1):121128. doi:10.1519/1533-4287(2004)018<0121:ciepah>2.0.co;2

    • Search Google Scholar
    • Export Citation
  • 59.

    Vervoorn C, Quist AM, Vermulst LJ, Erich WB, de Vries WR, Thijssen JH. The behaviour of the plasma free testosterone/cortisol ratio during a season of elite rowing training. Int J Sports Med. 1991;12(3):257263. doi:10.1055/s-2007-1024677

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Rowell AE, Aughey RJ, Hopkins WG, Stewart AM, Cormack SJ. Identification of sensitive measures of recovery after external load from football match play. Int J Sports Physiol Perform. 2017;12(7):969976. doi:10.1123/ijspp.2016-0522

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Rowell AE, Aughey RJ, Hopkins WG, Esmaeili A, Lazarus BH, Cormack SJ. Effects of training and competition load on neuromuscular recovery, testosterone, cortisol, and match performance during a season of professional football. Front Physiol. 2018;9:668. doi:10.3389/fphys.2018.00668

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Kraemer WJ, Marchitelli L, Gordon SE, et al. Hormonal and growth factor responses to heavy resistance exercise protocols. J Appl Physiol. 1990;69(4):14421450. doi:10.1152/jappl.1990.69.4.1442

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 63.

    Schoenfeld BJ. Postexercise hypertrophic adaptations: a reexamination of the hormone hypothesis and its applicability to resistance training program design. J Strength Cond Res. 2013;27(6):17201730. doi:10.1519/JSC.0b013e31828ddd53

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64.

    Barrett S, McLaren S, Spears I, Ward P, Weston M. The influence of playing position and contextual factors on soccer players’ match differential ratings of perceived exertion: a preliminary investigation. Sports. 2018;6(1):13. doi:10.3390/sports6010013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 65.

    Badin OO, Smith MR, Conte D, Coutts AJ. Mental fatigue: impairment of technical performance in small-sided soccer games. Int J Sports Physiol Perform. 2016;11(8):11001105. doi:10.1123/ijspp.2015-0710

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Smith MR, Marcora SM, Coutts AJ. Mental fatigue impairs intermittent running performance. Med Sci Sports Exerc. 2015;47(8):16821690. doi:10.1249/MSS.0000000000000592

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    Scott D, Norris D, Lovell R. Dose-response relationship between external load and wellness in elite women’s soccer matches: do customized velocity thresholds add value?  Int J Sports Physiol Perform. 2020;15(9):1245–1251. doi:10.1123/ijspp.2019-0660

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    Thorpe RT, Strudwick AJ, Buchheit M, Atkinson G, Drust B, Gregson W. Tracking morning fatigue status across in-season training weeks in elite soccer players. Int J Sports Physiol Perform. 2016;11(7):947952. doi:10.1123/ijspp.2015-0490

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Gallo TF, Cormack SJ, Gabbett TJ, Lorenzen CH. Pre-training perceived wellness impacts training output in Australian football players. J Sports Sci. 2016;34(15):14451451. doi:10.1080/02640414.2015.1119295

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70.

    Arent SM, Landers DM, Matt KS, Etnier JL. Dose-response and mechanistic issues in the resistance training and affect relationship. J Sport Exerc Psychol. 2005;27(1):92110. doi:10.1123/jsep.27.1.92

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 71.

    Bartholomew JB, Moore J, Todd J, Todd T, Elrod CC. Psychological states following resistance exercise of different workloads. J Appl Sport Psychol. 2001;13(4):399410. doi:10.1080/104132001753226265

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 72.

    Elsangedy HM, Krinski K, Machado DG, Agricola PM, Okano AH, Gregorio da Silva S. Self-selected intensity, ratings of perceived exertion, and affective responses in sedentary male subjects during resistance training. J Phys Ther Sci. 2016;28(6):17951800. doi:10.1589/jpts.28.1795

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 73.

    Engebretsen L, Soligard T, Steffen K, et al. Sports injuries and illnesses during the London Summer Olympic Games 2012. Br J Sports Med. 2013;47(7):407414. doi:10.1136/bjsports-2013-092380

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 74.

    Walsh NP, Gleeson M, Shephard RJ, et al. Position statement. Part one: immune function and exercise. Exerc Immunol Rev. 2011;17:663.

  • 75.

    Bayne H, Schwellnus M, van Rensburg DJ, Botha J, Pillay L. Incidence of injury and illness in South African professional male soccer players: a prospective cohort study. J Sports Med Phys Fitness. 2018;58(6):875879. doi:10.23736/S0022-4707.17.07452-7

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 76.

    Orhant E, Carling C, Cox A. A three-year prospective study of illness in professional soccer players. Res Sports Med. 2010;18(3):199204. doi:10.1080/15438627.2010.490462

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 77.

    Dvorak J, Junge A, Derman W, Schwellnus M. Injuries and illnesses of football players during the 2010 FIFA World Cup. Br J Sports Med. 2011;45(8):626630. doi:10.1136/bjsm.2010.079905

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 78.

    Bermon S, Castell LM, Calder PC, et al. Consensus statement immunonutrition and exercise. Exerc Immunol Rev. 2017;23:850.

  • 79.

    Walsh NP. Recommendations to maintain immune health in athletes. Eur J Sport Sci. 2018;18(6):820831. doi:10.1080/17461391.2018.1449895

  • 80.

    Drew MK, Vlahovich N, Hughes D, et al. A multifactorial evaluation of illness risk factors in athletes preparing for the Summer Olympic Games. J Sci Med Sport. 2017;20(8):745750. doi:10.1016/j.jsams.2017.02.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 81.

    Hellard P, Avalos M, Guimaraes F, Toussaint JF, Pyne DB. Training-related risk of common illnesses in elite swimmers over a 4-yr period. Med Sci Sports Exer. 2015;47(4):698707. doi:10.1249/MSS.0000000000000461

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 82.

    Tomasi TB, Trudeau FB, Czerwinski D, Erredge S. Immune parameters in athletes before and after strenuous exercise. J Clin Immunol. 1982;2(3):173178. doi:10.1007/BF00915219

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 83.

    Fitzgerald L. Exercise and the immune system. Immunol Today. 1988;9(11):337339. doi:10.1016/0167-5699(88)91332-1

  • 84.

    Gleeson M, Bishop NC, Walsh NP. Exercise Immunology. Abingdon, UK: Routledge; 2013.

  • 85.

    Simpson RJ, Campbell JP, Gleeson M, et al. Can exercise affect immune function to increase susceptibility to infection? Exerc Immunol Rev. 2020;26:822.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 86.

    Peake JM, Neubauer O, Walsh NP, Simpson RJ. Recovery of the immune system after exercise. J Appl Physiol. 2017;122(5):10771087. doi:10.1152/japplphysiol.00622.2016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 87.

    Ekblom B, Ekblom O, Malm C. Infectious episodes before and after a marathon race. Scand J Med Sci Sports. 2006;16(4):287293. doi:10.1111/j.1600-0838.2005.00490.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 88.

    Bishop NC, Blannin AK, Robson PJ, Walsh NP, Gleeson M. The effects of carbohydrate supplementation on immune responses to a soccer-specific exercise protocol. J Sports Sci. 1999;17(10):787796. doi:10.1080/026404199365506

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 89.

    Sari-Sarraf V, Reilly T, Doran DA. Salivary IgA response to intermittent and continuous exercise. Int J Sports Med. 2006;27(11):849855. doi:10.1055/s-2006-923777

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 90.

    Rosic I, Malicevic S, Medic S. Immune response to hepatitis B vaccine in elite athletes. Med Pregl. 2008;61(1–2):5559. doi:10.2298/MPNS0802055R

  • 91.

    Malm C, Ekblom O, Ekblom B. Immune system alteration in response to increased physical training during a five day soccer training camp. Int J Sports Med. 2004;25(6):471476. doi:10.1055/s-2004-821119

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 92.

    Mohr M, Draganidis D, Chatzinikolaou A, et al. Muscle damage, inflammatory, immune and performance responses to three football games in 1 week in competitive male players. Eur J Appl Physiol. 2016;116(1):179193. doi:10.1007/s00421-015-3245-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 93.

    Malm C, Ekblom O, Ekblom B. Immune system alteration in response to two consecutive soccer games. Acta Physiol Scand. 2004;180(2):143155. doi:10.1046/j.0001-6772.2003.01232.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 94.

    Morgans R, Orme P, Anderson L, Drust B, Morton JP. An intensive Winter fixture schedule induces a transient fall in salivary IgA in English premier league soccer players. Res Sports Med. 2014;22(4):346354. doi:10.1080/15438627.2014.944641

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 95.

    Edwards JP, Walsh NP, Diment PC, Roberts R. Anxiety and perceived psychological stress play an important role in the immune response after exercise. Exerc Immunol Rev. 2018;24:2634.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 96.

    Fondell E, Lagerros YT, Sundberg CJ, et al. Physical activity, stress, and self-reported upper respiratory tract infection. Med Sci Sports Exer. 2011;43(2):272279. doi:10.1249/MSS.0b013e3181edf108

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 97.

    Svendsen IS, Taylor IM, Tønnessen E, Bahr R, Gleeson M. Training-related and competition-related risk factors for respiratory tract and gastrointestinal infections in elite cross-country skiers. Br J Sports Med. 2016;50(13):809815. doi:10.1136/bjsports-2015-095398

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 98.

    Schlagheck ML, Walzik D, Joisten N, et al. Cellular immune response to acute exercise: comparison of endurance and resistance exercise. Eur J Haematol. 2020;105(1):7584. doi:10.1111/ejh.13412

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 99.

    Walsh NP. Nutrition and athlete immune health: new perspectives on an old paradigm. Sports Med. 2019;49(suppl):153168. doi:10.1007/s40279-019-01160-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 100.

    Romagnoli M, Sanchis-Gomar F, Alis R, et al. Changes in muscle damage, inflammation, and fatigue-related parameters in young elite soccer players after a match. J Sports Med Phys Fitness. 2016;56(10):11981205.

    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 596 596 370
Full Text Views 18 18 13
PDF Downloads 14 14 11