Bilateral Dorsolateral Prefrontal Cortex High-Definition Transcranial Direct-Current Stimulation Improves Time-Trial Performance in Elite Cyclists

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Background: The effects of anodal transcranial direct-current stimulation (tDCS) on endurance exercise performance are not yet fully understood. Different stimulated areas and low focality of classical tDCS technique may have led to discordant results. Purpose: This study investigated the effect of a bilateral anodal high-definition tDCS (HD-tDCS) of the dorsolateral prefrontal cortex on the cycling time-trial (TT) performance and physiological and perceptual response at moderate intensity in elite cyclists. Methods: A total of 8 elite cyclists (maximal oxygen consumption: 72.2 [4.3] mL·min−1·kg−1) underwent in a double-blind, counterbalanced, and randomized order the experimental treatment (HD-tDCS) or control treatment (SHAM). After 20 minutes of receiving either HD-tDCS on the dorsolateral prefrontal cortex (F3 and F4) or SHAM stimulation, the participants completed a constant-load trial (CLT) at 75% of the second ventilatory threshold. Thereafter, they performed a simulated 15-km TT. The ratings of perceived exertion, heart rate, cadence,  oxygen consumption, and respiratory exchange ratio were recorded during the CLT; the ratings of perceived exertion and heart rate were recorded during the TT. Results: The total time to complete the TT was 1.3% faster (HD-tDCS: 1212 [52] s vs SHAM: 1228 [56] s; P = .04) and associated with a higher heart rate (P < .001) and a tendency toward higher mean power output (P = .05). None of the physiological and perceptual variables measured during the CLT highlighted differences between the HD-tDCS and SHAM condition. Conclusions: The findings suggest that bilateral HD-tDCS on the dorsolateral prefrontal cortex improves cycling TT performance without altering the physiological and perceptual response at moderate intensity, indicating that an upregulation of the prefrontal cortex could enhance endurance exercise performance.

Pollastri and Gallo are with PENTAVIS, Laboratory of Sport Sciences, Lecco, Italy. Pollastri is also with the Bahrain–Merida World Tour Cycling Team, Manama, Bahrain. Gallo is also with the School of Sport Science, Università degli Studi di Milano, Milan, Italy. Zucca, Riba, Molino, and Geda are with the IRR Istituto delle Riabilitazioni RIBA, Turin, Italy. Gallo, Filipas, and La Torre are with the Dept of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy. La Torre is with the IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.

Gallo (g.gallo@pentavis.it) is corresponding author.
  • 1.

    Stagg CJ, Nitsche MA. Physiological basis of transcranial direct current stimulation. Neuroscientist. 2011;17(1):3753. PubMed ID: 21343407 doi:10.1177/1073858410386614

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Lefaucheur JP, Antal A, Ayache SS, et al . Evidence-based guidelines on the therapeutic use of transcranial Direct Current Stimulation (tDCS). Clin Neurophysiol. 2017;128(1):5692. PubMed ID: 27866120 doi:10.1016/j.clinph.2016.10.087

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Machado DGDS, Unal G, Andrade SM, et al . Effect of transcranial direct current stimulation on exercise performance: a systematic review and meta-analysis. Brain Stimul. 2019;12(3):593605. PubMed ID: 30630690 doi:10.1016/j.brs.2018.12.227

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Angius L, Hopker J, Mauger AR. The ergogenic effects of transcranial direct current stimulation on exercise performance. Front Physiol. 2017;8:90. PubMed ID: 28261112 doi:10.3389/fphys.2017.00090

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Okano AH, Fontes EB, Montenegro RA, et al . Brain stimulation modulates the autonomic nervous system, rating of perceived exertion and performance during maximal exercise. Br J Sports Med. 2015;49(18):12131218. PubMed ID: 23446641 doi:10.1136/bjsports-2012-091658

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Vitor-Costa M, Okuno NM, Bortolotti H, et al . Improving cycling performance: transcranial direct current stimulation increases time to exhaustion in cycling. PLoS One. 2015;10(12):e0144916.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Angius L, Mauger AR, Hopker J, Pascual-Leone A, Santarnecchi E, Marcora SM. Bilateral extracephalic transcranial direct current stimulation improves endurance performance in healthy individuals. Brain Stimul. 2018;11(1):108117. PubMed ID: 29079458 doi:10.1016/j.brs.2017.09.017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Angius L, Pageaux B, Hopker J, Marcora SM, Mauger AR. Transcranial direct current stimulation improves isometric time to exhaustion of the knee extensors. Neuroscience. 2016;339(17):363375. PubMed ID: 27751960 doi:10.1016/j.neuroscience.2016.10.028

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Park SB, Sung DJ, Kim B, Kim S, Han JK. Transcranial direct current stimulation of motor cortex enhances running performance. PLoS One. 2019;14(2):e0211902. PubMed ID: 30794568 doi:10.1371/journal.pone.0211902

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Angius L, Santarnecchi E, Pascual-Leone A, Marcora SM. Transcranial direct current stimulation over the left dorsolateral prefrontal cortex improves inhibitory control and endurance performance in healthy individuals. Neuroscience. 2019;419(1):3445. PubMed ID: 31493549 doi:10.1016/j.neuroscience.2019.08.052

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Barwood MJ, Butterworth J, Goodall S, et al . The effects of direct current stimulation on exercise performance, pacing and perception in temperate and hot environments. Brain Stimul. 2016;9(6):842849. PubMed ID: 27567471 doi:10.1016/j.brs.2016.07.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Holgado D, Zandonai T, Ciria LF, Zabala M, Hopker J, Sanabria D. Transcranial direct current stimulation (tDCS) over the left prefrontal cortex does not affect time-trial self-paced cycling performance: evidence from oscillatory brain activity and power output. PLoS One. 2019;14(2):e0210873. PubMed ID: 30726234 doi:10.1371/journal.pone.0210873

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Valenzuela PL, Amo C, Sánchez-Martínez G, et al. Enhancement of mood but not performance in elite athletes with transcranial direct-current stimulation. Int J Sports Physiol Perform. 2019;14(3):310316. PubMed ID: 30080428 doi:10.1123/ijspp.2018-0473

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Angius L, Hopker JG, Marcora SM, Mauger AR. The effect of transcranial direct current stimulation of the motor cortex on exercise-induced pain. Eur J Appl Physiol. 2015;115(11):23112319. PubMed ID: 26148882 doi:10.1007/s00421-015-3212-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Radel R, Tempest G, Denis G, Besson P, Zory R. Extending the limits of force endurance: stimulation of the motor or the frontal cortex? Cortex. 2017;97:96108. PubMed ID: 29101820 doi:10.1016/j.cortex.2017.09.026

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Flood A, Waddington G, Keegan RJ, Thompson KG, Cathcart S. The effects of elevated pain inhibition on endurance exercise performance. PeerJ. 2017;5:e3028. PubMed ID: 28265507 doi:10.7717/peerj.3028

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Alam M, Truong DQ, Khadka N, Bikson M. Spatial and polarity precision of concentric high-definition transcranial direct current stimulation (HD-tDCS). Phys Med Biol. 2016;61(12):45064521. PubMed ID: 27223853 doi:10.1088/0031-9155/61/12/4506

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Robertson CV, Marino FE. A role for the prefrontal cortex in exercise tolerance and termination. J Appl Physiol. 2016;120(4):464466. doi:10.1152/japplphysiol.00363.2015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Hyland-Monks R, Cronin L, McNaughton L, Marchant D. The role of executive function in the self-regulation of endurance performance: a critical review. Prog Brain Res. 2018;240:353370. PubMed ID: 30390840

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Shenhav A, Musslick S, Lieder F, et al . Toward a rational and mechanistic account of mental effort. Annu Rev Neurosci. 2017;40(1):99124. PubMed ID: 28375769 doi:10.1146/annurev-neuro-072116-031526

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    de Morree HM, Klein C, Marcora SM. Perception of effort reflects central motor command during movement execution. Psychophysiology. 2012;49:12421253. PubMed ID: 22725828

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Martin K, Staiano W, Menaspà P, et al. Superior inhibitory control and resistance to mental fatigue in professional road cyclists. PLoS One. 2016;11(7):e0159907. PubMed ID: 27441380 doi:10.1371/journal.pone.0159907

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Bhambhani Y, Malik R, Mookerjee S. Cerebral oxygenation declines at exercise intensities above the respiratory compensation threshold. Respir Physiol Neurobiol. 2007;156(2):196202. PubMed ID: 17045853 doi:10.1016/j.resp.2006.08.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Santos-Concejero J, Billaut F, Grobler L, Oliván J, Noakes TD, Tucker R. Maintained cerebral oxygenation during maximal self-paced exercise in elite Kenyan runners. J Appl Physiol. 2015;118(2):156162. doi:10.1152/japplphysiol.00909.2014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Lattari E, de Oliveira BS, Oliveira BRR, de Mello Pedreiro RC, Machado S, Neto GAM. Effects of transcranial direct current stimulation on time limit and ratings of perceived exertion in physically active women. Neurosci Lett. 2018;662:1216. PubMed ID: 28993207 doi:10.1016/j.neulet.2017.10.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Radel R, Brisswalter J, Perrey S. Saving mental effort to maintain physical effort: a shift of activity within the prefrontal cortex in anticipation of prolonged exercise. Cogn Affect Behav Neurosci. 2017;17(2):305314. PubMed ID: 27858329 doi:10.3758/s13415-016-0480-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Seitz RJ, Stephan KM, Binkofski F. Control of action as mediated by the human frontal lobe. Exp Brain Res. 2000;133(1):7180. PubMed ID: 10933212 doi:10.1007/s002210000402

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    De Pauw K, Roelands B, Cheung SS, de Geus B, Rietjens G, Meeusen R. Guidelines to classify subject groups in sport-science research. Int J Sports Physiol Perform. 2013;8(2):111122. PubMed ID: 23428482 doi:10.1123/ijspp.8.2.111

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Binder RK, Wonisch M, Corra U, et al. Methodological approach to the first and second lactate threshold in incremental cardiopulmonary exercise testing. Eur J Cardiovasc Prev Rehabil. 2008;15(6):726734. doi:10.1097/HJR.0b013e328304fed4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Borg G. Borg’s Perceived Exertion and Pain Scales. Champaign, IL: Human Kinetics; 1998.

  • 31.

    Marcora SM. Effort: Perception of. In: Goldstein EB, ed. Encyclopedia of Perception. Thousaand Oaks, CA: Sage; 2010:380383.

  • 32.

    Piacentini MF, Salvatori G, Di Cesare C, et al. Effect of zone-diet on training parameters in recreational master athletes. In: Reilly T, Atkinson G, eds. Contemporary Sport, Leisure and Ergonomics. London, UK: Routledge; 2009:227241.

    • Search Google Scholar
    • Export Citation
  • 33.

    Brownsberger J, Edwards A, Crowther R, et al . Impact of mental fatigue on selfpaced exercise. Int J Sports Med. 2013;34(12):10291036. PubMed ID: 23771830 doi:10.1055/s-0033-1343402

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Herwig U, Satrapi P, Schonfeldt-Lecuona C. Using the international 10-20 EEG system for positioning of transcranial magnetic stimulation. Brain Topogr. 2003;16(2):9599. doi:10.1023/B:BRAT.0000006333.93597.9d

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Bikson M, Grossman P, Thomas C, et al . Safety of transcranial direct current stimulation: evidence based update 2016. Brain Stimul. 2016;9(5):641661. PubMed ID: 27372845 doi:10.1016/j.brs.2016.06.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Bakeman R. Recommended effect size statistics for repeated measures designs. Behav Res Methods. 2005;37(3):379384. PubMed ID: 16405133 doi:10.3758/BF03192707

  • 37.

    Christensen PM, Shirai Y, Ritz C, Nordsborg NB. Caffeine and bicarbonate for speed: a meta- analysis of legal supplements potential for improving intense endurance exercise performance. Front Physiol. 2017;8:240. PubMed ID: 28536531 doi:10.3389/fphys.2017.00240

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Pageaux B. The psychobiological model of endurance performance: an effort-based decision-making theory to explain self-paced endurance performance. Sports Med. 2014;44(9):13191320. PubMed ID: 24809249 doi:10.1007/s40279-014-0198-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Egorova N, Yu R, Kaur N, Vangel M, et al . Neuromodulation of conditioned placebo/nocebo in heat pain: anodal vs cathodal transcranial direct current stimulation to the right dorsolateral prefrontal cortex. Pain. 2015;156(7):13421347. PubMed ID: 25806605 doi:10.1097/j.pain.0000000000000163

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Nejati V, Salehinejad MA, Nitsche MA. Interaction of the left Dorsolateral Prefrontal Cortex (l-DLPFC) and Right Orbitofrontal Cortex (OFC) in hot and cold executive functions: evidence from transcranial Direct Current Stimulation (tDCS). Neurosci. 2018;369:109123. doi:10.1016/j.neuroscience.2017.10.042

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 313 313 277
Full Text Views 14 14 11
PDF Downloads 8 8 5