Purpose: To compare the effects of velocity-based training (VBT) and 1-repetition-maximum (1RM) percentage-based training (PBT) on changes in strength, loaded countermovement jump (CMJ), and sprint performance. Methods: A total of 24 resistance-trained males performed 6 weeks of full-depth free-weight back squats 3 times per week in a daily undulating format, with groups matched for sets and repetitions. The PBT group lifted with fixed relative loads varying from 59% to 85% of preintervention 1RM. The VBT group aimed for a sessional target velocity that was prescribed from pretraining individualized load–velocity profiles. Thus, real-time velocity feedback dictated the VBT set-by-set training load adjustments. Pretraining and posttraining assessments included the 1RM, peak velocity for CMJ at 30%1RM (PV-CMJ), 20-m sprint (including 5 and 10 m), and 505 change-of-direction test (COD). Results: The VBT group maintained faster (effect size [ES] = 1.25) training repetitions with less perceived difficulty (ES = 0.72) compared with the PBT group. The VBT group had likely to very likely improvements in the COD (ES = −1.20 to −1.27), 5-m sprint (ES = −1.17), 10-m sprint (ES = −0.93), 1RM (ES = 0.89), and PV-CMJ (ES = 0.79). The PBT group had almost certain improvements in the 1RM (ES = 1.41) and possibly beneficial improvements in the COD (ES = −0.86). Very likely favorable between-groups effects were observed for VBT compared to PBT in the PV-CMJ (ES = 1.81), 5-m sprint (ES = 1.35), and 20-m sprint (ES = 1.27); likely favorable between-groups effects were observed in the 10-m sprint (ES = 1.24) and nondominant-leg COD (ES = 0.96), whereas the dominant-leg COD (ES = 0.67) was possibly favorable. PBT had small (ES = 0.57), but unclear differences for 1RM improvement compared to VBT. Conclusions: Both training methods improved 1RM and COD times, but PBT may be slightly favorable for stronger individuals focusing on maximal strength, whereas VBT was more beneficial for PV-CMJ, sprint, and COD improvements.