Association of Jumping Ability and Maximum Strength With Dive Distance in Swimmers

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: The aim of the current study was to investigate the relationship between dive distance (DD) and countermovement jump (CMJ) height, track start CMJ height, countermovement broad jump (CMBJ) distance, track start broad jump distance, and isometric midthigh pull peak force and relative peak force. Methods: A total of 27 (11 female and 16 male) regional-national-international-standard swimmers (mean [SD]; age = 19.5 [5.5] y; mass = 69.3 [10.5] kg; height = 1.77 [0.09] m) performed 3 trials of a track start dive, CMJ, track start CMJ, CMBJ, track start broad jump, and isometric midthigh pull. Results: Data were separated into pooled (females and males combined), females, and males. Large to very large correlations were found between DD and all variables tested for pooled data (r = .554–.853, P < .001–.008), with DD-CMBJ displaying the highest correlation (r = .853, P < .001). CMBJ accounted for 70% of the variance in DD. Females demonstrated moderate nonsignificant correlations between DD isometric midthigh pull (r = .379, P < .125). Males demonstrated very large significant correlations between DD-CMJ (r = .761, P < .001). Conclusions: DD demonstrated strong correlations with jump performances and multijoint isometric force production in pooled data. Males showed stronger correlations than females due to being stronger and being able to perform the jumping/strength tasks to a higher standard. Enhanced jump performance and increased maximal force production may, therefore, enhance DD in swimmers.

The authors are with the Dept of Sport, Exercise, and Physiotherapy, School of Health and Society, University of Salford, Salford, United Kingdom.

Calderbank (jessicacalderbank@gmail.com) is corresponding author.
  • 1.

    Fukunaga T, Ichinose Y, Masamitsu I, Kawakami Y, Fukashiro S. Determination of fascicle length and pennation. J Appl Physiol. 2008;82(1):354358. doi:10.1152/jappl.1997.82.1.354

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Beretic I, Durovic M, Okicic T, Dopsaj M. Relations between lower body isometric muscle force characteristics and start performance in elite male sprint swimmers. J Sports Sci Med. 2013;12(4):639645.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Cronin JB, Hansen KT. Strength and power predictors of sports speed. J Strength Cond Res. 2005;19(2):349357. PubMed ID: 15903374 doi:10.1519/14323.1

  • 4.

    Slawson S. A Novel Monitoring System for the Training of Elite Swimmers. [PhD thesis]. Loughborough, UK: Loughborough University, Institution of Repository; 2010.

    • Search Google Scholar
    • Export Citation
  • 5.

    Ruschel C, Gassenferth A, Pereira SM, Roesler H. Kinematical analysis of the swimming start: block, flight, and underwater phases. Proceedings in: XXV ISBS Symposium; April 28May 2, 2007. Canberra, Australia. https://ojs.ub.uni-konstanz.de/cpa. Accessed January 1, 2018.

    • Search Google Scholar
    • Export Citation
  • 6.

    Benjanuvatra N, Edmunds K, Blanksby B. Jumping abilities and swimming grab-start performances in elite and recreational swimmers. Int J Aquatic Res Educ. 2007;1(3):231241. doi:10.25035/ijare.01.03.06

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Sale DG. Neural adaptation to resistance training. Med Sci Sports Exerc. 2005;20(5):135145.

  • 8.

    Cormie P, McGuigan MR, Newton RU. Influence of strength on magnitude and mechanisms of adaptation to power training. Med Sci Sports Exerc. 2010;42(8):15661581. PubMed ID: 20639724 doi:10.1249/MSS.0b013e3181cf818d

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Suchomel TJ, Comfort P, Lake JP. Enhancing the force-velocity profile of athletes using weightlifting derivatives. Strength Cond J. 2017;39(1):1020. doi:10.1519/SSC.0000000000000275

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Benjanuvatra N, Lyttle A, Blanksby B, Larkin D. Force development profile of the lower limbs in the grab and track start in swimming. Proceedings in: ISBS Conference Proceedings Archive; April 21, 2008. Ottawa, CA. https://ojs.ub.uni-konstanz.de/cpa. Accessed January 1, 2018.

    • Search Google Scholar
    • Export Citation
  • 11.

    Arellano R, Llana S, Tella V, Morales E, Mercade J. A comparison CMJ, simulated and swimming grab start force recordings and their relationship with the start performance. Proceedings in: ISBS-Conference Proceedings Archive; 2005. Beijing, China. https://ojs.ub.uni-konstanz.de/cpa. Accessed January 1, 2018.

    • Search Google Scholar
    • Export Citation
  • 12.

    Breed RV, Young WB. The effect of a resistance training programme on the grab, track and swing starts in swimming. J Sports Sci. 2003;21(3):213220. PubMed ID: 12703850 doi:10.1080/0264041031000071047

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    De La Fuente B, Garcia F, Arellano R. Are the forces applied in the vertical countermovement jump related to the forces applied during the swimming start? Proceedings in: IX BSM; 2003. Granada, ES. https://www.iat.uni-leipzig.de/datenbanken/iks/bms/. Accessed on January 1, 2018.

    • Search Google Scholar
    • Export Citation
  • 14.

    Durovic M, Beretic I, Zrnzevic J, Okicic T, Jorgic B, Milanov M. The relations between power and force variables realized during the squat jump with start performance in national level male sprint swimmers. Facta Univ Ser Phys Educ Sport. 2015;13(1):8996.

    • Search Google Scholar
    • Export Citation
  • 15.

    Garcia-Ramos A, Feriche B, de la Fuente B, et al. Relationship between different push-off variables and start performance in experienced swimmers. Eur J Sport Sci. 2015;15(8):687695. PubMed ID: 26305175 doi:10.1080/17461391.2015.1063699

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Miyashita M, Takahashi S, Troup J, Wakayoshi K. Leg extension power of elite swimmers. In: MacLaren D, Reilly T, Lees A, eds. Proceedings in: VI BMS. London, UK: Taylor & Francis; 1992;295300. https://www.iat.uni-leipzig.de/datenbanken/iks/bms/Record/4019137. Accessed January 1, 2018.

    • Search Google Scholar
    • Export Citation
  • 17.

    Morouco P, Neiva H, Gonzalez-Badillo JJ, Garrido N, Marinho DA, Marques MC. Associations between dry land strength and power measurements with swimming performance in elite athletes: a pilot study. J Hum Kinet. 2011;29A(29):105112. PubMed ID: 23486734 doi:10.2478/v10078-011-0065-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Pearson C, McElroy G, Blitvich J, Subic A, Blanksby B. A comparison of the swimming start using traditional and modified starting blocks. J Hum Mov Stud. 1998;34(1):4966.

    • Search Google Scholar
    • Export Citation
  • 19.

    West D, Owen N, Cunningham D, Cook C, Kilduff L. Strength and power predictors of swimming starts in international sprint swimmers. J Strength Cond Res. 2011;25(4):950955. PubMed ID: 20664366 doi:10.1519/JSC.0b013e3181c8656f

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    McMahon J, Jones PA, Dos Santos T, Comfort P. Influence of dynamic strength index on countermovement jump force-, power-, velocity-, and displacement-time curves. Sports. 2017;5(72):111. doi:10.3390/sports5040072

    • Search Google Scholar
    • Export Citation
  • 21.

    McMahon J, Murphey S, Rej S, Comfort P. Countermovement-jump-phase characteristics of senior and academy rugby league players. Int J Sports Physiol Perform. 2017;12(6):803811. doi:10.1123/ijspp.2016-0467

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Dos’Santos T, Lake J, Jones PA, Comfort P. Effect of low-pass filtering on isometric midthigh pull kinetics. J Strength Cond Res. 2018;32(4):983989. doi:10.1519/JSC.0000000000002473

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Comfort P, Dos’Santos T, Beckham GK, Stone MH, Guppy SN, Haff GG. Standardization and methodological considerations for the isometric midthigh pull. Strength Cond J. 2019;41(2):5779. doi:10.1519/SSC.0000000000000433

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Hopkins WG. A scale of magnitudes for effect statistics. A new view of statistics. August 7, 2006. https://www.sportsci.org/resource/stats/effectmag.html. Accessed January 1, 2018.

    • Search Google Scholar
    • Export Citation
  • 25.

    Zatsiorsky V, Kraemer W. Goal specific strength training. In: Bahrke M, Schwarzentraub M, Eckstein M, Alisha J, eds. Science and Practice of Strength Training (pp. 156161). 2nd ed. Champaign, IL: Human Kinetics; 2006.

    • Search Google Scholar
    • Export Citation
  • 26.

    Bobbert M, Gerritsen K, Litjens M, Van Soest A. Why is countermovement jump height greater than squat jump height? Med Sci Sports Exerc. 1996;28(11):14021412. doi:10.1097/00005768-199611000-00009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Jeffreys I, Turner AN. The stretch-shortening cycle: proposed mechanisms and methods for enhancement. Strength Cond J. 2010;32(4):8799. doi:10.1519/SSC.0b013e3181e928f9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Speranza MJ, Gabbett T, Johnston RD, Sheppard J. Muscular strength and power correlators of tackling ability in semiprofessional rugby league players. J Strength Cond Res. 2015;29(8):20712078. PubMed ID: 26200016 doi:10.1519/JSC.0000000000000897

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 163 163 156
Full Text Views 9 9 7
PDF Downloads 8 8 7