Caffeine Ingestion Improves Performance During Fitness Tests but Does Not Alter Activity During Simulated Games in Professional Basketball Players

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: To examine the effects of acute caffeine supplementation on physical performance during fitness testing and activity during simulated games in basketball players. Methods: A double-blind, counterbalanced, randomized, crossover study design was followed. A total of 14 professional male basketball players ingested a placebo (sucrose) and caffeine (6 mg·kg−1 of body mass) in liquid form prior to completing 2 separate testing sessions. Each testing session involved completion of a standardized 15-minute warm-up followed by various fitness tests including 20-m sprints, countermovement jumps, Lane Agility Drill trials, and a repeated-sprint-ability test. Following a 20-minute recovery, players completed 3 × 7-minute 5-vs-5 simulated periods of full-court basketball games, each separated by 2 minutes of recovery. Local positioning system technology was used to measure player activity during games. Players completed a side-effects questionnaire 12 to 14 hours after testing. Results: Players experienced significant (P < .05), moderatevery large (effect size = −2.19 to 0.89) improvements in 20-m sprint, countermovement jump, Lane Agility Drill, and repeated-sprint-ability performance with caffeine supplementation. However, external workloads completed during simulated games demonstrated nonsignificant, trivialsmall (effect size = −0.23 to 0.12) changes between conditions. In addition, players reported greater (P < .05) insomnia and urine output after caffeine ingestion. Conclusions: Acute caffeine supplementation could be effective to improve physical performance during tests stressing fitness elements important in basketball. However, acute caffeine supplementation appears to exert no meaningful effects on the activity completed during simulated basketball games and may promote sleep disturbances and exert a diuretic effect when taken at 6 mg·kg−1 of body mass in professional players.

Raya-González, Soto-Célix, Rodríguez-Fernández, and Castillo are with the Faculty of Health Sciences, Universidad Isabel I, Burgos, Spain. Scanlan is with the Human Exercise and Training Laboratory, School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD, Australia.

Scanlan (a.scanlan@cqu.edu.au) is corresponding author.
  • 1.

    Svilar L, Castellano J, Jukic I. Comparison of 5 vs 5 training games and match-play using microsensor technology in elite basketball. J Strength Cond Res. 2019;33(7):18971903. PubMed ID: 30204654 doi:10.1519/JSC.0000000000002826

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Torres-Ronda L, Ric A, Llabres-Torres I, de Las Heras B, Schelling I Del Alcazar X. Position-dependent cardiovascular response and time-motion analysis during training drills and friendly matches in elite male basketball players. J Strength Cond Res. 2016;30(1):6070. PubMed ID: 26284807 doi:10.1519/JSC.0000000000001043

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Vazquez-Guerrero J, Reche X, Cos F, Casamichana D, Sampaio J. Changes in external load when modifying rules of 5-on-5 scrimmage situations in elite basketball. J Strength Cond Res. 2020;34(11):3217–3224. doi:10.1519/jsc.0000000000002761

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Maughan RJ, Burke LM, Dvorak J, et al. IOC onsensus statement: dietary supplements and the high-performance athlete. Int J Sport Nutr Exerc Metab. 2018;28(2):104125. PubMed ID: 29589768 doi:10.1123/ijsnem.2018-0020

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Salinero JJ, Lara B, Del Coso J. Effects of acute ingestion of caffeine on team sports performance: a systematic review and meta-analysis. Res Sport Med. 2019;27(2):238256. doi:10.1080/15438627.2018.1552146

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Goldstein ER, Ziegenfuss T, Kalman D, et al. International society of sports nutrition position stand: caffeine and performance. J Int Soc Sports Nutr. 2010;7(1):5. PubMed ID: 20205813 doi:10.1186/1550-2783-7-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Magkos F, Kavouras SA. Caffeine use in sports, pharmacokinetics in man, and cellular mechanisms of action. Crit Rev Food Sci Nutr. 2005;45(7–8):535562. doi:10.1080/1040-830491379245

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Stojanović E, Stojiljković N, Scanlan AT, et al. Acute caffeine supplementation promotes small to moderate improvements in performance tests indicative of in-game success in professional female basketball players. Appl Physiol Nutr Metab. 2019;44(8):849856. doi:10.1139/apnm-2018-0671

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Puente C, Abián-Vicén J, Salinero JJ, Lara B, Areces F, Del Coso J. Caffeine improves basketball performance in experienced basketball players. Nutrients. 2017;9(9):1033. doi:10.3390/nu9091033

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Tucker MA, Hargreaves JM, Clarke JC, Dale DL, Blackwell GJ. The effect of caffeine on maximal oxygen uptake and vertical jump performance in male basketball players. J Strength Cond Res. 2013;27(2):382387. PubMed ID: 22561972 doi:10.1519/JSC.0b013e31825922aa

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Abian-Vicen J, Puente C, Salinero JJ, et al. A caffeinated energy drink improves jump performance in adolescent basketball players. Amino Acids. 2014;46(5):13331341. PubMed ID: 24599611 doi:10.1007/s00726-014-1702-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Dalbo VJ, Roberts MD, Stout JR, Kerksick CM. Effect of gender on the metabolic impact of a commercially available thermogenic drink. J Strength Cond Res. 2010;24(6):16331642. PubMed ID: 20508469 doi:10.1519/JSC.0b013e3181db9bbd

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Kamimori GH, Karyekar CS, Otterstetter R, et al. The rate of absorption and relative bioavailability of caffeine administered in chewing gum versus capsules to normal healthy volunteers. Int J Pharm. 2002;234(1–2):159167. doi:10.1016/s0378-5173(01)00958-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Castillo D, Domínguez R, Rodríguez-Fernández A, Raya-González J. Effects of caffeine supplementation on power performance in a flywheel device: a randomised, double-blind cross-over study. Nutrients. 2019;11(2):255. doi:10.3390/nu11020255

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Desbrow B, Barrett CM, Minahan CL, Grant GD, Leveritt MD. Caffeine, cycling performance, and exogenous CHO oxidation. Med Sci Sports Exerc. 2009;41(9):17441751. doi:10.1249/MSS.0b013e3181a16cf7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Leite NM, Leser R, Goncalves B, Calleja-Gonzalez J, Baca A, Sampaio J. Effect of defensive pressure on movement behaviour during an under-18 basketball game. Int J Sports Med. 2014;35(9):743748. PubMed ID: 24816890 doi:10.1055/s-0033-1363237

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Del Coso J, Salinero JJ, Gonzalez-Millan C, Abian-Vicen J, Perez-Gonzalez B. Dose response effects of a caffeine-containing energy drink on muscle performance: a repeated measures design. J Int Soc Sports Nutr. 2012;9(1):21. PubMed ID: 22569090 doi:10.1186/1550-2783-9-21

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Balsalobre-Fernández C, Glaister M, Lockey RA. The validity and reliability of an iPhone app for measuring vertical jump performance. J Sports Sci. 2015;33(15):15741579. doi:10.1080/02640414.2014.996184

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Stojanović E, Aksović N, Stojiljković N, Stanković R, Scanlan AT, Milanović Z. Reliability, usefulness, and factorial validity of change-of-direction speed tests in adolescent basketball players. J Strength Cond Res. 2019;33(11):31623173. doi:10.1519/JSC.0000000000002666

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Bastida-Castillo A, Gómez-Carmona CD, De la Cruz-Sánchez E, Pino-Ortega J. Accuracy, intra- and inter-unit reliability, and comparison between GPS and UWB-based position-tracking systems used for time-motion analyses in soccer. Eur J Sport Sci. 2018;18(4):450457. PubMed ID: 29385963 doi:10.1080/17461391.2018.1427796

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Pino-Ortega J, Rojas-Valverde D, Gomez-Carmona CD, et al. Impact of contextual factors on external load during a congested-fixture tournament in elite U’18 basketball players. Front Psychol. 2019;10:1100. PubMed ID: 31156514 doi:10.3389/fpsyg.2019.01100

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Puente C, Abian-Vicen J, Areces F, Lopez R, Del Coso J. Physical and physiological demands of experienced male basketball players during a competitive game. J Strength Cond Res. 2017;31(4):956962. PubMed ID: 27467516 doi:10.1519/JSC.0000000000001577

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Atkinson G, Nevill AM. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med. 1998;26(4):217238. doi:10.2165/00007256-199826040-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Stuart GR, Hopkins WG, Cook C, Cairns SP. Multiple effects of caffeine on simulated high-intensity team-sport performance. Med Sci Sports Exerc. 2005;37(11):19982005. PubMed ID: 16286872 doi:10.1249/01.mss.0000177216.21847.8a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Shabir A, Hooton A, Tallis J, Higgins MF. The influence of caffeine expectancies on sport, exercise, and cognitive performance. Nutrients. 2018;10(10):E1528. PubMed ID: 30336606 doi:10.3390/nu10101528

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Scanlan AT, Dalbo VJ, Conte D, et al. No effect of caffeine supplementation on dribbling speed in elite basketball players. Int J Sports Physiol Perform. 2019;14(7):9971000. PubMed ID: 30569790 doi:10.1123/ijspp.2018-0871

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Drake C, Roehrs T, Shambroom J, Roth T. Caffeine effects on sleep taken 0, 3, or 6 hours before going to bed. J Clin Sleep Med. 2013;9(11):11951200. PubMed ID: 24235903 doi:10.5664/jcsm.3170

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Bell DG, McLellan TM. Exercise endurance 1, 3, and 6 h after caffeine ingestion in caffeine users and nonusers. J Appl Physiol. 2002;93(4):12271234. PubMed ID: 12235019 doi:10.1152/japplphysiol.00187.2002

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 102 102 102
Full Text Views 2 2 2
PDF Downloads 2 2 2