Internal-Training-Load Monitoring, Notational and Time-Motion Analyses, Psychometric Status, and Neuromuscular Responses in Elite Rugby Union

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: The present study aimed to verify if practicing tackles during rugby union training sessions would affect the players’ internal training load and acute strength loss. Method: A total of 9 male Italian Serie A rugby union players (age: 21 [2] y) were monitored by means of an integrated approach across 17 sessions, 6 with tackles (WT) and 11 with no tackles (NT). Edwards training load was quantified using heart-rate monitoring. Global positioning system devices were used to quantify the total distance and time at >20 W. Work-to-rest ratio was quantified by means of a video analysis. Before (PRE) and after (POST) the session, the players’ well-being and rating of perceived exertion were measured, respectively. The countermovement jump and plyometric push-up jump tests were performed on a force plate to record the players’ PRE–POST concentric peak force. Linear mixed models were applied to quantify the differences between WT and NT in terms of training load and PRE–POST force deltas, even controlling for other training factors. Results: The Edwards training load (estimated mean [EM]; standard error [SE]; WT: EM = 214, SE = 11.8; NT: EM = 194, SE = 11.1; P = .01) and session rating of perceived exertion (WT: EM = 379, SE = 21.9; NT: EM = 277, SE = 16.4; P < .001) were higher in WT than in NT. Conversely, no difference between the sessions emerged in the countermovement jump and plyometric push-up concentric peak force deltas. Conclusions: Although elite rugby union players’ external and internal training load can be influenced by practicing tackles, upper- and lower-limb strength seem to not be affected.

Lupo, Ungureanu, Boccia, Rainoldi, and Brustio are with the Neuromuscular Function Research Group, School of Exercise & Sport Sciences (SUISM), Dept of Medical Sciences, University of Turin, Turin, Italy. Licciardi is with the School of Exercise & Sport Sciences (SUISM), Dept of Medical Sciences, University of Turin, Turin, Italy.

Lupo (corrado.lupo@unito.it) is corresponding author.
  • 1.

    Ungureanu AN, Brustio PR, Mattina L, Lupo C. “How” is more important than “how much” for game possession in elite northern hemisphere rugby union. Biol Sport. 2019;36(3):265272. PubMed ID: 31624421 doi:10.5114/biolsport.2019.87048.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Ungureanu AN, Condello G, Pistore S, Conte D, Lupo C. Technical and tactical aspects in Italian youth rugby union in relation to different academies, regional tournaments, and outcomes. J Strength Cond Res. 2019;33(6):15571569. PubMed ID: 28820858 doi:10.1519/JSC.0000000000002188

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Roe G, Halkier M, Beggs C, Till K, Jones B. The use of accelerometers to quantify collisions and running demands of rugby union match-Play. Int J Perform Anal Sport. 2016;16(2):590601. doi:10.1080/24748668.2016.11868911

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Naughton M, Jones B, Hendricks S, King D, Murphy A, Cummins C. Quantifying the collision dose in rugby league: a systematic review, meta-analysis, and critical analysis. Sports Med Open. 2020;6(1):6. PubMed ID: 31970529 doi:10.1186/s40798-019-0233-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Boyd L, Gallaher E, Ball K, Stepto N, Aughey R, Varley M. Practical application of accelerometers in Australian football. J Sci Med Sport. 2010;13(1):e14e15. doi:10.1016/j.jsams.2010.10.491

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Cunniffe B, Proctor W, Baker JS, Davies B. An evaluation of the physiological demands of elite rugby union using global positioning system tracking software. J Strength Cond Res. 2009;23(4):11951203. PubMed ID: 19528840 doi:10.1519/JSC.0b013e3181a3928b

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Carling CJ, Lacome M, Flanagan E, O’Doherty P, Piscione J. Exposure time, running and skill-related performance in international u20 rugby union players during an intensified tournament. PLoS One. 2017;12(11):e0186874. PubMed ID: 29136039 doi:10.1371/journal.pone.0186874

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Lacome M, Carling C, Hager JP, Dine G, Piscione J. Workload, fatigue, and muscle damage in an under-20 rugby union team over an intensified international tournament. Int J Sports Physiol Perform. 2018;13(8):10591066. PubMed ID: 29431537 doi:10.1123/ijspp.2017-0464

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    McLean BD, Coutts AJ, Kelly V, McGuigan MR, Cormack SJ. Neuromuscular, endocrine, and perceptual fatigue responses during different length between-match microcycles in professional rugby league players. Int J Sports Physiol Perform. 2010;5(3):367383. PubMed ID: 20861526 doi:10.1123/ijspp.5.3.367

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Johnston RD, Gabbett TJ, Seibold AJ, Jenkins DG. Influence of physical contact on neuromuscular fatigue and markers of muscle damage following small-sided games. J Sci Med Sport. 2014;17(5):535540. PubMed ID: 23981503 doi:10.1016/j.jsams.2013.07.018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Roe G, Till K, Darrall-Jones J, et al. Changes in markers of fatigue following a competitive match in elite academy rugby union players. S Afr J Sports Med 2016;28(1):14. doi:10.17159/2078-516x/2016/v28i1a418

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Roe G, Darrall-Jones J, Till K, et al. The effect of physical contact on changes in fatigue markers following rugby union field-based training. Eur J Sport Sci. 2017;17(6):647655. PubMed ID: 28276911 doi:10.1080/17461391.2017.1287960

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Hagstrom AD, Shorter KA. Creatine kinase, neuromuscular fatigue, and the contact codes of football: a systematic review and meta-analysis of pre- and post-match differences. Eur J Sport Sci. 2018;18(9):12341244. PubMed ID: 29870313 doi:10.1080/17461391.2018.1480661

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Kennedy RA, Drake D. The effect of acute fatigue on countermovement jump performance in rugby union players during preseason. J Sports Med Phys Fitness. 2017;57(10):12611266. PubMed ID: 28085126

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Padulo J, Iuliano E, Brisola G, et al. Validity and reliability of a standalone low-end 50-Hz GNSS receiver during running. Biol Sport. 2019;36(1):7580. PubMed ID: 30899142 doi:10.5114/biolsport.2019.79974.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Casolino E, Cortis C, Lupo C, Chiodo S, Minganti C, Capranica L. Physiological versus psychological evaluation in taekwondo elite athletes. Int J Sports Physiol Perform. 2012;7(4):322331. PubMed ID: 22694946 doi:10.1123/ijspp.7.4.322

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Chiodo S, Tessitore A, Lupo C, Ammendolia A, Cortis C, Capranica L. Effects of official youth taekwondo competitions on jump and strength performance. Eur J Sport Sci. 2012;12(2):113120. doi:10.1080/17461391.2010.545837

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Johnston RD, Gibson NV, Twist C, Gabbett TJ, MacNay SA, MacFarlane NG. Physiological responses to an intensified period of rugby league competition. J Strength Cond Res. 2013;27(3):643654. PubMed ID: 22592168 doi:10.1519/JSC.0b013e31825bb469

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    McMahon JJ, Jones PA, Suchomel TJ, Lake J, Comfort P. Influence of the Reactive Strength Index Modified on force– and power–time curves. Int J Sports Physiol Perform. 2018;13(2):220227. PubMed ID: 28605214 doi:10.1123/ijspp.2017-0056

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    McMahon JJ, Murphy S, Rej SJE, Comfort P. Countermovement-jump-phase characteristics of senior and academy rugby league players. Int J Sports Physiol Perform. 2017;12(6):803811. PubMed ID: 27918658 doi:10.1123/ijspp.2016-0467

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    McMahon JJ, Suchomel TJ, Lake JP, Comfort P. Understanding the key phases of the countermovement jump force-time curve. Strength Cond J. 2018;40(4):96106.

    • Search Google Scholar
    • Export Citation
  • 22.

    Garcia-Angulo A, Palao JM, Gimenez-Egido JM, Garcia-Angulo FJ, Ortega-Toro E. Effect of the modification of the number of players, the size of the goal, and the size of the field in competition on the play actions in U-12 male football. Int J Environ Res Public Health. 2020;17(2):518. doi:10.3390/ijerph17020518

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Edwards S. The Heart Rate Monitor Book. Sacramento, CA: LWW; 1993.

  • 24.

    Foster C, Hector LL, Welsh R, Schrager M, Green MA, Snyder AC. Effects of specific versus cross-training on running performance. Eur J Appl Physiol. 1995;70(4):367372. doi:10.1007/BF00865035

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377381. PubMed ID: 7154893 doi:10.1249/00005768-198205000-00012

  • 26.

    Sams ML, Sato K, DeWeese BH, Sayers AL, Stone MH. Quantifying changes in squat jump height across a season of men’s collegiate soccer. J Strength Cond Res. 2018;32(8):23242330. PubMed ID: 28700511 doi:10.1519/JSC.0000000000002118

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Duthie G, Pyne D, Hooper S. Time motion analysis of 2001 and 2002 super 12 rugby. J Sports Sci. 2005;23(5):523530. PubMed ID: 16195000 doi:10.1080/02640410410001730188

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Eaton C, George K. Position specific rehabilitation for rugby union players. Part I: empirical movement analysis data. Phys Ther Sport. 2006;7(1):2229. doi:10.1016/j.ptsp.2005.08.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Vandenbogaerde TJ, Hopkins WG. Monitoring acute effects on athletic performance with mixed linear modeling. Med Sci Sports Exerc. 2010;42(7):13391344. PubMed ID: 20068494 doi:10.1249/MSS.0b013e3181cf7f3f

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Hoppe MW, Baumgart C, Polglaze T, Freiwald J. Validity and reliability of GPS and LPS for measuring distances covered and sprint mechanical properties in team sports. PLoS One. 2018;13(2):e0192708. PubMed ID: 29420620 doi:10.1371/journal.pone.0192708

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Carlos Lago P, Alberto L-C, David C, et al. La creación de conocimiento en los deportes de equipo. Sobre el tamaño de la muestra y la generalización de los resultados. JUMP. 2020;1:78. doi:10.17561/jump.n1.e

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 418 418 165
Full Text Views 27 27 7
PDF Downloads 23 23 4