Can Genetic Testing Predict Talent? A Case Study of 5 Elite Athletes

in International Journal of Sports Physiology and Performance
View More View Less
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: The genetic influence on the attainment of elite athlete status is well established, with a number of polymorphisms found to be more common in elite athletes than in the general population. As such, there is considerable interest in understanding whether this information can be utilized to identify future elite athletes. Accordingly, the aim of this study was to compare the total genotype scores of 5 elite athletes to those of nonathletic controls, to subsequently determine whether genetic information could discriminate between these groups, and, finally, to suggest how these findings may inform debates relating to the potential for genotyping to be used as a talent-identification tool. Methods: The authors compared the total genotype scores for both endurance (68 genetic variants) and speed-power (48 genetic variants) elite athlete status of 5 elite track-and-field athletes, including an Olympic champion, to those of 503 White European nonathletic controls. Results: Using the speed-power total genotype score, the elite speed-power athletes scored higher than the elite endurance athletes; however, using this speed-power score, 68 nonathletic controls registered higher scores than the elite power athletes. Surprisingly, using the endurance total genotype score, the elite speed-power athletes again scored higher than the elite endurance athletes. Conclusions: These results suggest that genetic information is not capable of accurately discriminating between elite athletes and nonathletic controls, illustrating that the use of such information as a talent-identification tool is currently unwarranted and ineffective.

The authors are with the Inst of Coaching and Performance, School of Sport and Wellbeing, University of Central Lancashire, Preston, United Kingdom.

Pickering (craigpickering1014@hotmail.com) is corresponding author.

Supplementary Materials

    • Supplementary Material (xlsx 13 KB)
  • 1.

    De Moor MH, Spector TD, Cherkas LF, et al. Genome-wide linkage scan for athlete status in 700 British female DZ twin pairs. Twin Res Hum Genet. 2007;10(6):812820. PubMed ID: 18179392 doi:10.1375/twin.10.6.812

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Yang N, MacArthur DG, Gulbin JP, et al. ACTN3 genotype is associated with human elite athletic performance. Am J Hum Genet. 2003;73(3):627631. PubMed ID: 12879365 doi:10.1086/377590

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Webborn N, Williams A, McNamee M, et al. Direct-to-consumer genetic testing for predicting sports performance and talent identification: consensus statement. Br J Sports Med. 2015;49(23):14861491. PubMed ID: 26582191 doi:10.1136/bjsports-2015-095343

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Williams AG, Folland JP. Similarity of polygenic profiles limits the potential for elite human physical performance. J Physiol. 2008;586(1):113121. PubMed ID: 17901117 doi:10.1113/jphysiol.2007.141887

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Hughes DC, Day SH, Ahmetov II, Williams AG. Genetics of muscle strength and power: polygenic profile similarity limits skeletal muscle performance. J Sports Sci. 2011;29(13):14251434. PubMed ID: 21867446 doi:10.1080/02640414.2011.597773

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Ruiz JR, Gómez-Gallego F, Santiago C, et al. Is there an optimum endurance polygenic profile? J Physiol. 2009;587(7):15271534. doi:10.1113/jphysiol.2008.166645

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Ruiz JR, Arteta D, Buxens A, et al. Can we identify a power-oriented polygenic profile? J Appl Physiol. 2010;108(3):561566. PubMed ID: 20044471 doi:10.1152/japplphysiol.01242.2009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Ahmetov II, Egorova ES, Gabdrakhmanova LJ, Fedotovskaya ON. Genes and athletic performance: an update. Med Sport Sci. 2016;61:4154. PubMed ID: 27287076

  • 9.

    Guilherme JP, Lancha AH Jr. Single nucleotide polymorphisms in carnosinase genes (CNDP1 and CNDP2) are associated with power athletic status. Int J Sport Nutr Exerc Metab. 2017;27(6):533542. PubMed ID: 28871847 doi:10.1123/ijsnem.2017-0098

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Varley I, Patel S, Williams AG, Hennis PJ. The current use, and opinions of elite athletes and support staff in relation to genetic testing in elite sport within the UK. Biol Sport. 2018;35(1):1319. PubMed ID: 30237657

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Ahmetov II, Fedotovskaya ON. Current progress in sports genomics. Adv Clin Chem. 2015;70:247314. PubMed ID: 26231489

  • 12.

    Voisin S, Guilherme JP, Yan X, et al. ACVR1B rs2854464 is associated with sprint/power athletic status in a large cohort of Europeans but not Brazilians. PLoS One. 2016;11(6):e0156316. PubMed ID: 27253421 doi:10.1371/journal.pone.0156316

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Yvert TP, Zempo H, Gabdrakhmanova LJ, et al. AGTR2 and sprint/power performance: a case-control replication study for rs11091046 polymorphism in two ethnicities. Biol Sport. 2018;35(2):105109. PubMed ID: 30455538

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Stebbings GK, Williams AG, Herbert AJ, et al. TTN genotype is associated with fascicle length and marathon running performance. Scand J Med Sci Sports. 2018;28(2):400406. PubMed ID: 28581678 doi:10.1111/sms.12927

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Gayagay G, Yu B, Hambly B, Hambly B, et al. Elite endurance athletes and the ACE I allele—the role of genes in athletic performance. Hum Genet. 1998;103(1):4850. PubMed ID: 9737775 doi:10.1007/s004390050781

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Papadimitriou ID, Lucia A, Pitsiladis YP, et al. ACTN3 R577X and ACE I/D gene variants influence performance in elite sprinters: a multi-cohort study. BMC Genomics. 2016;17(1):285. doi:10.1186/s12864-016-2462-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Ma F, Yang Y, Li X, Zhou F, Gao C, Li M, Gao L. The association of sport performance with ACE and ACTN3 genetic polymorphisms: a systematic review and meta-analysis. PLoS One. 2013;8(1):e54685. PubMed ID: 23358679 doi:10.1371/journal.pone.0054685

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Weyerstraß J, Stewart K, Wesselius A, Zeegers M. Nine genetic polymorphisms associated with power athlete status—a meta-analysis. J Sci Med Sport. 2018;21(2):213220. doi:10.1016/j.jsams.2017.06.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Papadimitriou ID, Lockey SJ, Voisin S, et al. No association between ACTN3 R577X and ACE I/D polymorphisms and endurance running times in 698 Caucasian athletes. BMC Genomics. 2018;19(1):13. PubMed ID: 29298672 doi:10.1186/s12864-017-4412-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Camporesi S, McNamee MJ. Ethics, genetic testing, and athletic talent: children’s best interests, and the right to an open (athletic) future. Physiol Genomics. 2016;48(3):191195. PubMed ID: 26757798 doi:10.1152/physiolgenomics.00104.2015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Pickering C, Kiely J, Grgic J, Lucia A, Del Coso J. Can genetic testing identify talent for sport? Genes. 2019;10(12):972. doi:10.3390/genes10120972

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Niemi AK, Majamaa K. Mitochondrial DNA and ACTN3 genotypes in Finnish elite endurance and sprint athletes. Eur J Hum Genet. 2005;13(8):965969. PubMed ID: 15886711 doi:10.1038/sj.ejhg.5201438

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Castro MG, Terrados N, Reguero JR, Alvarez V, Coto E. Mitochondrial haplogroup T is negatively associated with the status of elite endurance athlete. Mitochondrion. 2007;7(5):354357. PubMed ID: 17660050 doi:10.1016/j.mito.2007.06.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Scott RA, Fuku N, Onywera VO, et al. Mitochondrial haplogroups associated with elite Kenyan athlete status. Med Sci Sports Exerc. 2009;41(1):123128. PubMed ID: 19092698 doi:10.1249/MSS.0b013e31818313a2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Abe D, Doi H, Asai T, et al. Association between COMT Val158Met polymorphism and competition results of competitive swimmers. J Sports Sci. 2018;36(4):393397. PubMed ID: 28368213

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Petito A, Altamura M, Iuso S, et al. The relationship between personality traits, the 5HTT polymorphisms, and the occurrence of anxiety and depressive symptoms in elite athletes. PLoS One. 2016;11(6):e0156601. PubMed ID: 27257942 doi:10.1371/journal.pone.0156601

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Marouli E, Graff M, Medina-Gomez C, et al. Rare and low-frequency coding variants alter human adult height. Nature. 2017;542(7640):186190. PubMed ID: 28146470 doi:10.1038/nature21039

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Jacob Y, Cripps A, Evans T, Chivers PT, Joyce C, Anderton RS. Identification of genetic markers for skill and athleticism in sub-elite Australian football players: a pilot study. J Sports Med Phys Fitness. 2018;58(3):241248. PubMed ID: 27448144

    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 141 141 141
Full Text Views 5 5 5
PDF Downloads 5 5 5