Implementing Strength Training Strategies for Injury Prevention in Soccer: Scientific Rationale and Methodological Recommendations

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Due to the negative effects that injuries have on performance, club finances, and long-term player health (permanent disability after a severe injury), prevention strategies are an essential part of both sports medicine and performance. Purpose: To summarize the current evidence regarding strength training for injury prevention in soccer and to inform its evidence-based implementation in research and applied settings. Conclusions: The contemporary literature suggests that strength training, proposed as traditional resistance, eccentric, and flywheel training, may be a valid method to reduce injury risk in soccer players. Training strategies involving multiple components (eg, a combination of strength, balance, plyometrics) that include strength exercises are effective at reducing noncontact injuries in female soccer players. In addition, the body of research currently published supports the use of eccentric training in sports, which offers unique physiological responses compared with other resistance exercise modalities. It seems that the Nordic hamstring exercise, in particular, is a viable option for the reduction of hamstring injuries in soccer players. Moreover, flywheel training has specific training peculiarities and advantages that are related to the combination of both concentric and eccentric contraction, which may play an important role in injury prevention. It is the authors’ opinion that strength and conditioning coaches should integrate the strength training methods proposed here in their weekly training routine to reduce the likelihood of injuries in their players; however, further research is needed to verify the advantages and disadvantages of these training methods to injury prevention using specific cohorts of soccer players.

Beato is with the School of Health and Sports Sciences, University of Suffolk, Ipswich, United Kingdom. Maroto-Izquierdo is with the Inst of Biomedicine (IBIOMED), University of León, León, Spain. Turner and Bishop are with the Faculty of Science and Technology, London Sport Inst, Middlesex University, London, United Kingdom.

Beato (m.beato@uos.ac.uk) is corresponding author.
  • 1.

    Manoel LS, Xixirry MG, Soeira TP, Saad MC, Riberto M. Identification of ankle injury risk factors in professional soccer players through a preseason functional assessment. Orthop J Sports Med. 2020;8(6):232596712092843. PubMed ID: 32637431 doi:10.1177/2325967120928434

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Ekstrand J, Hagglund M, Walden M. Injury incidence and injury patterns in professional football: the UEFA injury study. Br J Sports Med. 2011;45(7):553558. PubMed ID: 19553225 doi:10.1136/bjsm.2009.060582

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Hawkins RD. The association football medical research programme: an audit of injuries in professional football. Br J Sports Med. 2001;35(1):4347. PubMed ID: 11157461 doi:10.1136/bjsm.35.1.43

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Hägglund M, Waldén M, Magnusson H, Kristenson K, Bengtsson H, Ekstrand J. Injuries affect team performance negatively in professional football: an 11-year follow-up of the UEFA Champions League injury study. Br J Sports Med. 2013;47(12):738742. PubMed ID: 23645832 doi:10.1136/bjsports-2013-092215

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Ekstrand J. Keeping your top players on the pitch: the key to football medicine at a professional level. Br J Sports Med. 2013;47(12):723724. doi:10.1136/bjsports-2013-092771

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Turner AP. Long term health impact of playing professional football in the United Kingdom. Br J Sports Med. 2000;34(5):332336. PubMed ID: 11049141 doi:10.1136/bjsm.34.5.332

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Moreno-Pérez V, Soler A, Ansa A, et al. Acute and chronic effects of competition on ankle dorsiflexion ROM in professional football players. Eur J Sport Sci. 2020;20(1):5160. PubMed ID: 31072261 doi:10.1080/17461391.2019.1611930

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Fanchini M, Steendahl IB, Impellizzeri FM, et al. Exercise-based strategies to prevent muscle injury in elite footballers: a systematic review and best evidence synthesis. Sports Med. 2020;50(9):16531666. PubMed ID: 32185630 doi:10.1007/s40279-020-01282-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    López-Valenciano A, Ruiz-Pérez I, Garcia-Gómez A, et al. Epidemiology of injuries in professional football: a systematic review and meta-analysis. Br J Sports Med. 2020;54(12):711718. PubMed ID: 31171515 doi:10.1136/bjsports-2018-099577

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Wong P. Soccer injury in the lower extremities. Br J Sports Med. 2005;39(8):473482. PubMed ID: 16046325 doi:10.1136/bjsm.2004.015511

  • 11.

    Buckthorpe M, Wright S, Bruce-Low S, et al. Recommendations for hamstring injury prevention in elite football: translating research into practice. Br J Sports Med. 2019;53(7):449456. PubMed ID: 30413424 doi:10.1136/bjsports-2018-099616

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Bahr R. Understanding injury mechanisms: a key component of preventing injuries in sport. Br J Sports Med. 2005;39(6):324329. PubMed ID: 15911600 doi:10.1136/bjsm.2005.018341

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Emery CA, Pasanen K. Current trends in sport injury prevention. Best Pract Res Clin Rheumatol. 2019;33(1):315. PubMed ID: 31431273 doi:10.1016/j.berh.2019.02.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Silva JR, Nassis GP, Rebelo A. Strength training in soccer with a specific focus on highly trained players. Sports Med Open. 2015;1(1):17. PubMed ID: 26284158 doi:10.1186/s40798-015-0006-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Brunner R, Friesenbichler B, Casartelli NC, Bizzini M, Maffiuletti NA, Niedermann K. Effectiveness of multicomponent lower extremity injury prevention programmes in team-sport athletes: an umbrella review. Br J Sports Med. 2019;53(5):282288. PubMed ID: 30201793 doi:10.1136/bjsports-2017-098944

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    O’Brien J, Finch CF. A systematic review of core implementation components in team ball sport injury prevention trials. Inj Prev. 2014;20(5):357362. PubMed ID: 24706721 doi:10.1136/injuryprev-2013-041087

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Thorborg K, Krommes KK, Esteve E, Clausen MB, Bartels EM, Rathleff MS. Effect of specific exercise-based football injury prevention programmes on the overall injury rate in football: a systematic review and meta-analysis of the FIFA 11 and 11+ programmes. Br J Sports Med. 2017;51(7):562571. PubMed ID: 28087568 doi:10.1136/bjsports-2016-097066

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Harøy J, Clarsen B, Wiger EG, et al. The Adductor Strengthening Programme prevents groin problems among male football players: a cluster-randomised controlled trial. Br J Sports Med. 2019;53(3):150157. PubMed ID: 29891614 doi:10.1136/bjsports-2017-098937

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Kohavi B, Beato M, Laver L, Freitas TT, Chung LH, Dello Iacono A. Effectiveness of field-based resistance training protocols on hip muscle strength among young elite football players. Clin J Sport Med. 2020;30(5):470477. PubMed ID: 30418198 doi:10.1097/jsm.0000000000000649

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Lauersen JB, Bertelsen DM, Andersen LB. The effectiveness of exercise interventions to prevent sports injuries: a systematic review and meta-analysis of randomised controlled trials. Br J Sports Med. 2014;48(11):871877. PubMed ID: 24100287 doi:10.1136/bjsports-2013-092538

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Lauersen JB, Andersen TE, Andersen LB. Strength training as superior, dose-dependent and safe prevention of acute and overuse sports injuries: a systematic review, qualitative analysis and meta-analysis. Br J Sports Med. 2018;52(24):15571563. PubMed ID: 30131332 doi:10.1136/bjsports-2018-099078

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Bompa T, Buzzichelli C. Periodization: Theory and Methodology of Training. 6th ed. Champaign, IL: Human Kinetics Publishers; 2018.

  • 23.

    Crossley KM, Patterson BE, Culvenor AG, Bruder AM, Mosler AB, Mentiplay BF. Making football safer for women: a systematic review and meta-analysis of injury prevention programmes in 11 773 female football (soccer) players. Br J Sports Med. 2020;54(18):10891098. PubMed ID: 32253193 doi:10.1136/bjsports-2019-101587

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Case MJ, Knudson DV, Downey DL. Barbell squat relative strength as an identifier for lower extremity injury in collegiate athletes. J Strength Cond Res. 2020;34(5):12491253. PubMed ID: 32084107 doi:10.1519/JSC.0000000000003554

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Nichols AW. Does eccentric training of hamstring muscles reduce acute injuries in soccer? Clin J Sport Med. 2013;23(1):8586. PubMed ID: 23269328 doi:10.1097/JSM.0b013e31827e9f40

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Beato M, Dello Iacono A. Implementing flywheel (isoinertial) exercise in strength training: current evidence, practical recommendations, and future directions. Front Physiol. 2020;11:569. PubMed ID: 32581845 doi:10.3389/fphys.2020.00569

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    de Hoyo M, Pozzo M, Sañudo B, et al. Effects of a 10-week in-season eccentric-overload training program on muscle-injury prevention and performance in junior elite soccer players. Int J Sports Physiol Perform. 2015;10(1):4652. PubMed ID: 24910951 doi:10.1123/ijspp.2013-0547

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Askling C, Karlsson J, Thorstensson A. Hamstring injury occurrence in elite soccer players after preseason strength training with eccentric overload. Scand J Med Sci Sports. 2003;13(4):244250. PubMed ID: 12859607 doi:10.1034/j.1600-0838.2003.00312.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    del Ama Espinosa G, Pöyhönen T, Aramendi JF, Samaniego JC, Emparanza Knörr JI, Kyröläinen H. Effects of an eccentric training programme on hamstring strain injuries in women football players. Biomed Hum Kinet. 2015;7(1):125134. doi:10.1515/bhk-2015-0019

    • Search Google Scholar
    • Export Citation
  • 30.

    Al Attar WSA, Soomro N, Sinclair PJ, Pappas E, Sanders RH. Effect of injury prevention programs that include the Nordic hamstring exercise on hamstring injury rates in soccer players: a systematic review and meta-analysis. Sports Med. 2017;47(5):907916. PubMed ID: 27752982 doi:10.1007/s40279-016-0638-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Shield AJ, Bourne MN. Hamstring injury prevention practices in elite sport: evidence for eccentric strength vs lumbo-pelvic training. Sports Med. 2018;48(3):513524. PubMed ID: 29143267 doi:10.1007/s40279-017-0819-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Schuermans J, Van Tiggelen D, Palmans T, Danneels L, Witvrouw E. Deviating running kinematics and hamstring injury susceptibility in male soccer players: cause or consequence? Gait Posture. 2017;57:270277. PubMed ID: 28683419 doi:10.1016/j.gaitpost.2017.06.268

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Petersen J, Thorborg K, Nielsen MB, Budtz-Jørgensen E, Hölmich P. Preventive effect of eccentric training on acute hamstring injuries in men’s soccer. Am J Sports Med. 2011;39(11):22962303. PubMed ID: 21825112 doi:10.1177/0363546511419277

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    van der Horst N, Smits D-W, Petersen J, Goedhart EA, Backx FJG. The preventive effect of the Nordic hamstring exercise on hamstring injuries in amateur soccer players. Am J Sports Med. 2015;43(6):13161323. PubMed ID: 25794868 doi:10.1177/0363546515574057

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Mjølsnes R, Arnason A, Østhagen T, Raastad T, Bahr R. A 10-week randomized trial comparing eccentric vs concentric hamstring strength training in well-trained soccer players. Scand J Med Sci Sports. 2004;14(5):311317. PubMed ID: 15387805 doi:10.1046/j.1600-0838.2003.367.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Suchomel TJ, Wagle JP, Douglas J, et al. Implementing eccentric resistance training—part 1: a brief review of existing methods. J Funct Morphol Kinesiol. 2019;4(2):38. doi:10.3390/jfmk4020038

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Suchomel TJ, Wagle JP, Douglas J, et al. Implementing eccentric resistance training—part 2: practical recommendations. J Funct Morphol Kinesiol. 2019;4(3):55. doi:10.3390/jfmk4030055

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Douglas J, Pearson S, Ross A, McGuigan M. Chronic adaptations to eccentric training: a systematic review. Sports Med. 2017;47(5):917941. PubMed ID: 27647157 doi:10.1007/s40279-016-0628-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Wagle JP, Taber CB, Cunanan AJ, et al. Accentuated eccentric loading for training and performance: a review. Sports Med. 2017;47(12):24732495. PubMed ID: 28681170 doi:10.1007/s40279-017-0755-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    van de Hoef PAS, Brink MSM, Huisstede BMAB, et al. Does a bounding exercise program prevent hamstring injuries in adult male soccer players?—a cluster–RCT. Scand J Med Sci Sports. 2019;29(4):515523. PubMed ID: 30536639 doi:10.1111/sms.13353

    • Search Google Scholar
    • Export Citation
  • 41.

    Maroto-Izquierdo S, García-López D, Fernandez-Gonzalo R, Moreira OC, González-Gallego J, de Paz JA. Skeletal muscle functional and structural adaptations after eccentric overload flywheel resistance training: a systematic review and meta-analysis. J Sci Med Sport. 2017;20(10):943951. PubMed ID: 28385560 doi:10.1016/j.jsams.2017.03.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Beato M, McErlain-Naylor SA, Halperin I, Dello Iacono A. Current evidence and practical applications of flywheel eccentric overload exercises as postactivation potentiation protocols: a brief review. Int J Sports Physiol Perform. 2020;15(2):154161. PubMed ID: 31743092 doi:10.1123/ijspp.2019-0476

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Beato M, Fleming A, Coates A, Dello Iacono A. Validity and reliability of a flywheel squat test in sport [published online ahead of print October 6, 2020]. J Sports Sci. doi:10.1080/02640414.2020.1827530

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Maroto-Izquierdo S, Fernandez-Gonzalo R, Magdi HR, Manzano-Rodriguez S, González-Gallego J, De Paz JA. Comparison of the musculoskeletal effects of different iso-inertial resistance training modalities: flywheel vs electric-motor. Eur J Sport Sci. 2019;19(9):11841194. PubMed ID: 30957699 doi:10.1080/17461391.2019.1588920

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Martinez-Aranda LM, Fernandez-Gonzalo R. Effects of inertial setting on power, force, work, and eccentric overload during flywheel resistance exercise in women and men. J Strength Cond Res. 2017;31(6):16531661. PubMed ID: 28538317 doi:10.1519/JSC.0000000000001635

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Carroll KM, Wagle JP, Sato K, et al. Characterising overload in inertial flywheel devices for use in exercise training. Sports Biomech. 2019;18(4):390401. PubMed ID: 29558854 doi:10.1080/14763141.2018.1433715

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Suarez-Arrones L, Saez de Villarreal E, Núñez FJ, et al. In-season eccentric-overload training in elite soccer players: effects on body composition, strength and sprint performance. PLoS One. 2018;13(10):e0205332. PubMed ID: 30325935 doi:10.1371/journal.pone.0205332

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Coratella AG, Beato M, E, Scurati R, Milanese C. Effects of in-season enhanced negative work-based vs traditional weight training on change of direction and hamstrings-to-quadriceps ratio in soccer players. Biol Sport. 2019;36(3):241248. PubMed ID: 31624418 doi:10.5114/biolsport.2019.87045

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Beato M, De Keijzer KL, Leskauskas Z, Allen WJ, Dello Iacono A, McErlain-Naylor SA. Effect of postactivation potentiation after medium vs high inertia eccentric overload exercise on standing long jump, countermovement jump, and change of direction performance [published online ahead of print June 19, 2019]. J Strength Cond Res. doi:10.1519/jsc.0000000000003214

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Beato M, Madruga-Parera M, Piqueras-Sanchiz F, Moreno-Pérez V, Romero-Rodriguez D. Acute effect of eccentric overload exercises on change of direction performance and lower-limb muscle contractile function [published online ahead of print September 2, 2019]. J Strength Cond Res. doi:10.1519/jsc.0000000000003359

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Fiorilli G, Mariano I, Iuliano E, et al. Isoinertial eccentric-overload training in young soccer players: effects on strength, sprint, change of direction, agility and soccer shooting precision. J Sports Sci Med. 2020;19(1):213223. PubMed ID: 32132845

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Norrbrand L, Pozzo M, Tesch PA. Flywheel resistance training calls for greater eccentric muscle activation than weight training. Eur J Appl Physiol. 2010;110(5):9971005. PubMed ID: 20676897 doi:10.1007/s00421-010-1575-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Tous-Fajardo J, Maldonado RA, Quintana JM, Pozzo M, Tesch PA. The flywheel leg-curl machine: offering eccentric overload for hamstring development. Int J Sports Physiol Perform. 2006;1(3):293298. PubMed ID: 19116442 doi:10.1123/ijspp.1.3.293

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Turner AN, Stewart PF. Strength and conditioning for soccer players. Strength Cond J. 2014;36(4):113. doi:10.1519/SSC.0000000000000054

  • 55.

    Beato M, Bianchi M, Coratella G, Merlini M, Drust B. A single session of straight line and change-of-direction sprinting per week does not lead to different fitness improvements in elite young soccer players [published online ahead of print September 2, 2019]. J Strength Cond Res. doi:10.1519/jsc.0000000000003369

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Gonzalo-Skok O, Moreno-Azze A, Arjol-Serrano JL, Tous-Fajardo J, Bishop C. A comparison of 3 different unilateral strength training strategies to enhance jumping performance and decrease interlimb asymmetries in soccer players. Int J Sports Physiol Perform. 2019;14(9):12561264. PubMed ID: 30860411 doi:10.1123/ijspp.2018-0920

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 57.

    Stern D, Gonzalo-Skok O, Loturco I, Turner A, Bishop C. A comparison of bilateral vs unilateral-biased strength and power training interventions on measures of physical performance in elite youth soccer players. J Strength Cond Res. 2020;34(8):21052111. PubMed ID: 32541618 doi:10.1519/JSC.0000000000003659

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Wagle JP, Cunanan AJ, Carroll KM, et al. Accentuated eccentric loading and cluster set configurations in the back squat [published online ahead of print June 20, 2018]. J Strength Cond Res. doi:10.1519/jsc.0000000000002677

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    de Hoyo M, de la Torre A, Pradas F, et al. Effects of eccentric overload bout on change of direction and performance in soccer players. Int J Sports Med. 2014;36(4):308314. PubMed ID: 25525954 doi:10.1055/s-0034-1395521

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60.

    Raya-González J, Castillo D, Beato M. The flywheel paradigm in team sports [published online ahead of print April 2020]. Strength Cond J. doi:10.1519/ssc.0000000000000561

    • Search Google Scholar
    • Export Citation
  • 61.

    Gonzalo-Skok O, Tous-Fajardo J, Valero-Campo C, et al. Eccentric-overload training in team-sport functional performance: constant bilateral vertical versus variable unilateral multidirectional movements. Int J Sports Physiol Perform. 2017;12(7):951958. PubMed ID: 27967273 doi:10.1123/ijspp.2016-0251

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Tous-Fajardo J, Gonzalo-Skok O, Arjol-Serrano JL, Tesch P. Enhancing change-of-direction speed in soccer players by functional inertial eccentric overload and vibration training. Int J Sports Physiol Perform. 2016;11(1):6673. PubMed ID: 25942419 doi:10.1123/ijspp.2015-0010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Madruga-Parera M, Bishop C, Fort-Vanmeerhaeghe A, Beato M, Gonzalo-Skok O, Romero-Rodr D. Effects of 8 weeks of isoinertial vs cable- resistance training on motor skills performance and interlimb asymmetries [published online ahead of print April 29, 2020]. J Strength Cond Res. doi:10.1519/jsc.0000000000003594

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64.

    Lovell R, Whalan M, Marshall PWM, Sampson JA, Siegler JC, Buchheit M. Scheduling of eccentric lower limb injury prevention exercises during the soccer micro-cycle: which day of the week? Scand J Med Sci Sports. 2018;28(10):22162225. PubMed ID: 29797592 doi:10.1111/sms.13226

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Sabido R, Hernández-Davó JL, Pereyra-Gerber GT. Influence of different inertial loads on basic training variables during the flywheel squat exercise. Int J Sports Physiol Perform. 2018;13(4):482489. PubMed ID: 28872379 doi:10.1123/ijspp.2017-0282

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1522 1522 293
Full Text Views 80 80 8
PDF Downloads 50 50 4