Postexercise Hot-Water Immersion Does Not Further Enhance Heat Adaptation or Performance in Endurance Athletes Training in a Hot Environment

Click name to view affiliation

Christopher J. Stevens
Search for other papers by Christopher J. Stevens in
Current site
Google Scholar
PubMed
Close
,
Megan L.R. Ross
Search for other papers by Megan L.R. Ross in
Current site
Google Scholar
PubMed
Close
,
Amelia J. Carr
Search for other papers by Amelia J. Carr in
Current site
Google Scholar
PubMed
Close
,
Brent Vallance
Search for other papers by Brent Vallance in
Current site
Google Scholar
PubMed
Close
,
Russ Best
Search for other papers by Russ Best in
Current site
Google Scholar
PubMed
Close
,
Charles Urwin
Search for other papers by Charles Urwin in
Current site
Google Scholar
PubMed
Close
,
Julien D. Périard
Search for other papers by Julien D. Périard in
Current site
Google Scholar
PubMed
Close
, and
Louise Burke
Search for other papers by Louise Burke in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: Hot-water immersion (HWI) after training in temperate conditions has been shown to induce thermophysiological adaptations and improve endurance performance in the heat; however, the potential additive effects of HWI and training in hot outdoor conditions remain unknown. Therefore, this study aimed to determine the effect of repeated postexercise HWI in athletes training in a hot environment. Methods: A total of 13 (9 female) elite/preelite racewalkers completed a 15-day training program in outdoor heat (mean afternoon high temperature = 34.6°C). Athletes were divided into 2 matched groups that completed either HWI (40°C for 30–40 min) or seated rest in 21°C (CON), following 8 training sessions. Pre–post testing included a 30-minute fixed-intensity walk in heat, laboratory incremental walk to exhaustion, and 10,000-m outdoor time trial. Results: Training frequency and volume were similar between groups (P = .54). Core temperature was significantly higher during immersion in HWI (38.5 [0.3]) than CON (37.8°C [0.2°C]; P < .001). There were no differences between groups in resting or exercise rectal temperature or heart rate, skin temperature, sweat rate, or the speed at lactate threshold 2, maximal O2 uptake, or 10,000-m performance (P > .05). There were significant (P < .05) pre–post differences for both groups in submaximal exercising heart rate (∼11 beats·min−1), sweat rate (0.34–0.55 L·h−1) and thermal comfort (1.2–1.5 arbitrary units), and 10,000-m racewalking performance time (∼3 min). Conclusions: Both groups demonstrated significant improvement in markers of heat adaptation and performance; however, the addition of HWI did not provide further enhancements. Improvements in adaptation appeared to be maximized by the training program in hot conditions.

Stevens is with the School of Health and Human Sciences, Southern Cross University, Coffs Harbour, NSW, Australia. Ross and Burke are with the Australian Inst of Sport, Bruce, ACT, Australia, and the Mary MacKillop Inst for Health Research, Australian Catholic University, Melbourne, VIC, Australia. Carr and Urwin are with the Centre for Sport Research, Deakin University, Melbourne, VIC, Australia. Vallance is with the Maribyrnong Sports Academy and Athletics Australia, Melbourne, VIC, Australia. Best is with the Centre for Sport Science and Human Performance, Waikato Inst of Technology, Hamilton, New Zealand. Périard is with the Research Inst for Sport and Exercise, University of Canberra, Canberra, ACT, Australia.

Stevens (Christopher.Stevens@scu.edu.au) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Guy JH, Deakin GB, Edwards AM, Miller CM, Pyne DB. Adaptation to hot environmental conditions: an exploration of the performance basis, procedures and future directions to optimise opportunities for elite athletes. Sports Med. 2014;45(3):303311. doi:10.1007/s40279-014-0277-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Periard JD, Cramer MN, Chapman PG, Caillaud C, Thompson MW. Cardiovascular strain impairs prolonged self-paced exercise in the heat. Exp Physiol. 2011;96(2):134144. PubMed ID: 20851861

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Febbraio MA, Snow RJ, Stathis CG, Hargreaves M, Carey MF. Effect of heat stress on muscle energy metabolism during exercise. J Appl Physiol. 1994;77(6):28272831. PubMed ID: 7896628 doi:10.1152/jappl.1994.77.6.2827

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Stevens CJ, Mauger AR, Hassmen P, Taylor L. Endurance performance is influenced by perceptions of pain and temperature: theory, applications and safety considerations. Sports Med. 2018;48(3):525537. PubMed ID: 29270865 doi:10.1007/s40279-017-0852-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Mora-Rodriguez R, Ortega JF, Hamouti N. In a hot-dry environment racewalking increases the risk of hyperthermia in comparison to when running at a similar velocity. Eur J Appl Physiol. 2011;111(6):10731080. PubMed ID: 21113615 doi:10.1007/s00421-010-1733-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Saunders AG, Dugas JP, Tucker R, Lambert MI, Noakes TD. The effects of different air velocities on heat storage and body temperature in humans cycling in a hot, humid environment. Acta Physiol Scand. 2005;183(3):241255. PubMed ID: 15743384 doi:10.1111/j.1365-201X.2004.01400.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Stevens C, Ross M, Periard JD, Vallance B, Burke L. Core temperature responses to elite racewalking competition. Int J Sports Physiol Perform. 2020;15(6):892895 . doi:10.1123/ijspp.2019-0397

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Racinais S, Alonso JM, Coutts AJ, et al. Consensus recommendations on training and competing in the heat. Br J Sports Med. 2015;49(18):11641173. PubMed ID: 26069301 doi:10.1136/bjsports-2015-094915

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Racinais S, Periard JD, Karlsen A, Nybo L. Effect of heat and heat-acclimatization on cycling time-trial performance and pacing. Med Sci Sports Exerc. 2015;47(3):601606. PubMed ID: 24977692 doi:10.1249/MSS.0000000000000428

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Lorenzo S, Halliwill JR, Sawka MN, Minson CT. Heat acclimation improves exercise performance. J Appl Physiol. 2010;109(4):11401147. PubMed ID: 20724560 doi:10.1152/japplphysiol.00495.2010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Tyler CJ, Reeve T, Hodges GJ, Cheung SS. The effects of heat adaptation on physiology, perception and exercise performance in the heat: a meta-analysis. Sports Med. 2016;46(11):16991724. PubMed ID: 27106556 doi:10.1007/s40279-016-0538-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Gerrett N, Kingma BRM, Sluijter R, Daanen HAM. Ambient conditions prior to Tokyo 2020 Olympic and Paralympic games: considerations for acclimation or acclimatization strategies. Front Physiol. 2019;10:414. PubMed ID: 31068829 doi:10.3389/fphys.2019.00414

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Daanen HAM, Racinais S, Periard JD. Heat acclimation decay and re-induction: a systematic review and meta-analysis. Sports Med. 2018;48(2):409430. PubMed ID: 29129022 doi:10.1007/s40279-017-0808-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Périard JD, Racinais S, Timpka T, et al. Strategies and factors associated with preparing for competing in the heat: a cohort study at the 2015 IAAF World Athletics Championships. Br J Sports Med. 2017;51(4):264270. PubMed ID: 27815238 doi:10.1136/bjsports-2016-096579

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Casadio JR, Kilding AE, Cotter JD, Laursen PB. From lab to real world: heat acclimation considerations for elite athletes. Sports Med. 2017;47(8):14671476. PubMed ID: 28035584 doi:10.1007/s40279-016-0668-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Saunders PU, Garvican-Lewis LA, Chapman RF, Periard JD. Special environments: altitude and heat. Int J Sport Nutr Exerc Metab. 2019;29(2):210219. PubMed ID: 30676138 doi:10.1123/ijsnem.2018-0256

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Heathcote S, Hassmen P, Zhou S, Stevens C. Passive heating: reviewing practical heat acclimation strategies for endurance athletes. Front Physiol. 2018;9(9):1851. doi:10.3389/fphys.2018.01851

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Scoon GS, Hopkins WG, Mayhew S, Cotter JD. Effect of post-exercise sauna bathing on the endurance performance of competitive male runners. J Sci Med Sport. 2007;10(4):259262. PubMed ID: 16877041 doi:10.1016/j.jsams.2006.06.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Zurawlew MJ, Walsh NP, Fortes MB, Potter C. Post-exercise hot water immersion induces heat acclimation and improves endurance exercise performance in the heat. Scand J Med Sci Sports. 2016;26(7):745754. PubMed ID: 26661992 doi:10.1111/sms.12638

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Stephenson BT, Tolfrey K, Goosey-Tolfrey VL. Mixed active and passive, heart rate-controlled heat acclimation is effective for paralympic and able-bodied triathletes. Front Physiol. 2019;10:1214. PubMed ID: 31616314 doi:10.3389/fphys.2019.01214

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Dill DB, Costill DL. Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J Appl Physiol. 1974;37(2):247248. PubMed ID: 4850854 doi:10.1152/jappl.1974.37.2.247

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Saunders PU, Telford RD, Pyne DB, et al. Improved running economy in elite runners after 20 days of simulated moderate-altitude exposure. J Appl Physiol. 2004;96(3):931937. doi:10.1152/japplphysiol.00725.2003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Newell J, Higgins D, Madden N, et al. Software for calculating blood lactate endurance markers. J Sports Sci. 2007;25(12):14031409. PubMed ID: 17786693 doi:10.1080/02640410601128922

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Nässi A, Ferrauti A, Meyer T, Pfeiffer M, Kellmann M. Development of two short measures for recovery and stress in sport. Eur J Sport Sci. 2017;17(7):894903. doi:10.1080/17461391.2017.1318180

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Heathcote S, Hassmen P, Zhou S, Taylor L, Stevens C. How does a delay between temperate running exercise and hot-water immersion alter the acute thermoregulatory response and heat-load? Frontiers Physiol. 2019;10:1381. doi:10.3389/fphys.2019.01381

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Kenefick RW, Ely BR, Cheuvront SN, Palombo LJ, Goodman DA, Sawka MN. Prior heat stress: effect on subsequent 15-min time trial performance in the heat. Med Sci Sports Exerc. 2009;41(6):13111316. PubMed ID: 19461533 doi:10.1249/MSS.0b013e3181988c14

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Ramanathan NL. A new weighting system for mean surface temperature of the human body. J Appl Physiol. 1964;19(3):531533. PubMed ID: 14173555 doi:10.1152/jappl.1964.19.3.531

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Zhang H, Huizenga C, Arens E, Wang D. Thermal sensation and comfort in transient non-uniform thermal environments. Eur J Appl Physiol. 2004;92(6):728733. PubMed ID: 15221406 doi:10.1007/s00421-004-1137-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    McGorm H, Roberts LA, Coombes JS, Peake JM. Turning up the heat: an evaluation of the evidence for heating to promote exercise recovery, muscle rehabilitation and adaptation. Sports Med. 2018;48(6):13111328. PubMed ID: 29470824 doi:10.1007/s40279-018-0876-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Strandberg TE, Strandberg A, Pitkala K, Benetos A. Sauna bathing, health, and quality of life among octogenarian men: the Helsinki businessmen study. Aging Clin Exp Res. 2018;30(9):10531057. PubMed ID: 29188579 doi:10.1007/s40520-017-0855-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Janssen CW, Lowry CA, Mehl MR, et al. Whole-body hyperthermia for the treatment of major depressive disorder: a randomized clinical trial. JAMA Psychiatry. 2016;73(8):789795. PubMed ID: 27172277 doi:10.1001/jamapsychiatry.2016.1031

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Turner G, Fudge BW, Pringle JSM, Maxwell NS, Richardson AJ. Altitude training in endurance running: perceptions of elite athletes and support staff. J Sports Sci. 2019;37(2):163172. PubMed ID: 29932816 doi:10.1080/02640414.2018.1488383

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Janse de Jonge XA, Thompson MW, Chuter VH, Silk LN, Thom JM. Exercise performance over the menstrual cycle in temperate and hot, humid conditions. Med Sci Sports Exerc. 2012;44(11):21902198. PubMed ID: 22776870 doi:10.1249/MSS.0b013e3182656f13

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 4163 982 158
Full Text Views 165 26 0
PDF Downloads 138 18 0