Heart-Rate Variability Recording Time and Performance in Collegiate Female Rowers

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: To assess the agreement of the root mean square of successive R-R interval (RMSSD) values when recorded immediately upon waking to values recorded later in the morning prior to practice, and to determine the associations of the RMSSD recordings with performance outcomes in female rowers. Methods: A total of 31 National Collegiate Athletic Association Division I rowers were monitored for 6 consecutive days. Two seated RMSSD measurements were obtained on at least 3 mornings using a smartphone-based photoplethysmography application. Each 1-minute RMSSD measure was recorded following a 1-minute stabilization period. The first (T1) measurement occurred at the athlete’s home following waking, while the second (T2) transpired upon arrival at the team’s boathouse immediately before practice. From the measures, the RMSSD mean and coefficient of variation were calculated. Two objective performance assessments were conducted on an indoor rowing ergometer on separate days: 2000-m time trial and distance covered in 30 minutes. Interteam rank was determined by the coaches, based on subjective and objective performance markers. Results: The RMSSD mean (intraclass correlation coefficient = .82; 95% CI, .63 to .92) and RMSSD coefficient of variation (intraclass correlation coefficient = .75; 95% CI, .48 to .88) were strongly correlated at T1 and T2, P < .001. The RMSSD mean at T1 and T2 was moderately associated with athlete rank (r = −.55 and r = −.46, respectively), 30-minute distance (r = .40 and r = .41, respectively), and 2000 m at T1 (r = −.37), P < .05. No significant correlations were observed for the RMSSD coefficient of variation. Conclusion: Ultrashort RMSSD measurements taken immediately upon waking show very strong agreement with those taken later in the morning, at the practice facility. Future research should more thoroughly investigate the relationship between specific performance indices and the RMSSD mean and coefficient of variation for female collegiate rowers.

The authors are with the Dept of Kinesiology, University of Alabama, Tuscaloosa, AL, USA. Sherman is also with the Integrative Physiology Laboratory, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA.

Sherman (ssherm5@uic.edu) is corresponding author.
  • 1.

    Buchheit M. Monitoring training status with HR measures: do all roads lead to Rome? Front Physiol. 2014;5:73. PubMed ID: 24578692 doi:10.3389/fphys.2014.00073

  • 2.

    Task Force of the European Society of Cardiology the North American Society of Pacing Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Task force of the European society of cardiology and the North American society of pacing and electrophysiology. Circulation. 1996;93(5):10431065. doi:10.1161/01.CIR.93.5.1043

    • Search Google Scholar
    • Export Citation
  • 3.

    Esco MR, Flatt AA. Ultra-short-term heart rate variability indexes at rest and post-exercise in athletes: evaluating the agreement with accepted recommendations. J Sports Sci Med. 2014;13(3):535541. PubMed ID: 25177179

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Atlaoui D, Pichot V, Lacoste L, Barale F, Lacour J, Chatard J. Heart rate variability, training variation and performance in elite swimmers. Int J Sports Med. 2007;28(5):394400. PubMed ID: 17111320 doi:10.1055/s-2006-924490

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Garet M, Tournaire N, Roche F, et al. . Individual interdependence between nocturnal ANS activity and performance in swimmers. Med Sci Sports Exerc. 2004;36(12):21122118. PubMed ID: 15570148 doi:10.1249/01.MSS.0000147588.28955.48

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Iellamo F, Legramante JM, Pigozzi F, et al. . Conversion from vagal to sympathetic predominance with strenuous training in high-performance world class athletes. Circulation. 2002;105(23):27192724. PubMed ID: 12057984 doi:10.1161/01.CIR.0000018124.01299.AE

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Bellenger CR, Fuller JT, Thomson RL, Davison K, Robertson EY, Buckley JD. Monitoring athletic training status through autonomic heart rate regulation: a systematic review and meta-analysis. Sports Med. 2016;46(10):14611486. PubMed ID: 26888648 doi:10.1007/s40279-016-0484-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Hagerman FC. Applied physiology of rowing. Sports Med. 1984;1(4):303326. PubMed ID: 6390606 doi:10.2165/00007256-198401040-00005

  • 9.

    Mäestu J, Jürimäe J, Jürimäe T. Monitoring of performance and training in rowing. Sports Med. 2005;35(7):597617. PubMed ID: 16026173

  • 10.

    Flatt AA, Hornikel B, Esco MR. Heart rate variability and psychometric responses to overload and tapering in collegiate sprint-swimmers. J Sci Med Sport. 2017;20(6):606610. PubMed ID: 27890479 doi:10.1016/j.jsams.2016.10.017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Plews DJ, Laursen PB, Stanley J, Kilding AE, Buchheit M. Training adaptation and heart rate variability in elite endurance athletes: opening the door to effective monitoring. Sports Med. 2013;43(9):773781. PubMed ID: 23852425 doi:10.1007/s40279-013-0071-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Penttila J, Helminen A, Jartti T, et al. . Time domain, geometrical and frequency domain analysis of cardiac vagal outflow: effects of various respiratory patterns. Clin Physiol. 2001;21(3):365376. PubMed ID: 11380537 doi:10.1046/j.1365-2281.2001.00337.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Flatt AA, Esco MR. Heart rate variability stabilization in athletes: towards more convenient data acquisition. Clin Physiol Funct Imaging. 2016;36(5):331336. PubMed ID: 25754514 doi:10.1111/cpf.12233

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Aubert AE, Seps B, Beckers F. Heart rate variability in athletes. Sports Med. 2003;33(12):889919. PubMed ID: 12974657 doi:10.2165/00007256-200333120-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Pereira LA, Flatt AA, Ramirez-Campillo R, Loturco I, Nakamura FY. Assessing shortened field-based heart-rate-variability-data acquisition in team-sport athletes. Int J Sports Physiol Perform. 2016;11(2):154158. PubMed ID: 26115088 doi:10.1123/ijspp.2015-0038

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Schneider C, Hanakam F, Wiewelhove T, et al. . Heart rate monitoring in team sports—a conceptual framework for contextualizing heart rate measures for training and recovery prescription. Front Physiol. 2018;9:639. PubMed ID: 29904351 doi:10.3389/fphys.2018.00639

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Fatisson J, Oswald V, Lalonde F. Influence diagram of physiological and environmental factors affecting heart rate variability: an extended literature overview. Heart Int. 2016;11(1):3240. doi:10.5301/heartint.5000232

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Janse de Jonge XA. Effects of the menstrual cycle on exercise performance. Sports Med. 2003;33(11):833851. PubMed ID: 12959622 doi:10.2165/00007256-200333110-00004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Plews DJ, Scott B, Altini M, Wood M, Kilding AE, Laursen PB. Comparison of heart rate variability recording with smart phone photoplethysmographic, polar H7 chest strap and electrocardiogram methods. Int J Sports Physiol Perform. 2017;12(10):13241328. PubMed ID: 28290720 doi:10.1123/ijspp.2016-0668

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Esco MR, Flatt AA, Nakamura FY. Agreement between a smartphone pulse sensor application and electrocardiography for determining lnRMSSD. J Strength Cond Res. 2017;31(2):380385. PubMed ID: 28125545 doi:10.1519/JSC.0000000000001519

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Flatt AA, Esco MR, Allen JR, et al. . Heart rate variability and training load among national collegiate athletic association division 1 college football players throughout spring camp. J Strength Cond Res. 2018;32(11):31273134. doi:10.1519/JSC.0000000000002241

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Nakamura FY, Pereira LA, Cal Abad CC, et al. . Adequacy of the ultra-short-term HRV to assess adaptive processes in youth female basketball players. J Hum Kinet. 2017;56(1):7380. PubMed ID: 28469745 doi:10.1515/hukin-2017-0024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Mikulić P, Smoljanović T, Bojanić I, Hannafin JA, Matković BR. Relationship between 2000-m rowing ergometer performance times and World Rowing Championships rankings in elite-standard rowers. J Sports Sci. 2009;27(9):907913. doi:10.1080/02640410902911950

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Nakamura FY, Pereira LA, Esco MR, et al. . Intraday and interday reliability of ultra-short-term heart rate variability in rugby union players. J Strength Cond Res. 2017;31(2):548551. PubMed ID: 27243917 doi:10.1519/JSC.0000000000001514

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Plews D, Laursen P, Le Meur Y, Hausswirth C, Kilding A, Buchheit M. Monitoring training with heart rate-variability: how much compliance is needed for valid assessment? Int J Sports Physiol Perform. 2014;9(5):783790. PubMed ID: 24334285 doi:10.1123/ijspp.2013-0455

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1(8476):307310. PubMed ID: 2868172 doi:10.1016/S0140-6736(86)90837-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Flatt AA, Esco MR. Smartphone-derived heart-rate variability and training load in a women’s soccer team. Int J Sports Physiol Perform. 2015;10(8):9941000. PubMed ID: 25756657 doi:10.1123/ijspp.2014-0556

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Bonnemeier H, Wiegand Uwe KH, Brandes A, et al. . Circadian profile of cardiac autonomic nervous modulation in healthy subjects. J Cardiovasc Electrophysiol. 2003;14(8):791799. PubMed ID: 12890036 doi:10.1046/j.1540-8167.2003.03078.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Molgaard H, Sorensen KE, Bjerregaard P. Circadian variation and influence of risk factors on heart rate variability in healthy subjects. Am J Cardiol. 1991;68(8):777784. PubMed ID: 1892086

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 423 423 57
Full Text Views 18 18 1
PDF Downloads 11 11 2