Effects of Different In-Season Strength Training Methods on Strength Gains and Water Polo Performance

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: This study aimed to compare the effects of 5 different 18-week in-season strength training programs on strength gains and specific water polo performance. Methods: A total of 56 young male water polo players were randomly assigned to the following 5 training groups: dry-land strength training, in-water-specific strength training, combined (dry-land and in-water) strength training, ballistic training, and eccentric-overload training. Physical performance was assessed before (Pre) and after (Post) the training period using the following battery of tests: in-water boost and countermovement jump, muscle strength in bench-press and full-squat, throwing speed (ThS), in-water agility, and 20-m maximal sprint swim. Results: Significant group × time interactions were observed for countermovement jump and in-water boost. Eccentric-overload training showed significantly higher gains in ThS and bench-press and full-squat strength than the rest of the training groups. In addition, all training groups (except in-water-specific strength training) induced significant improvements (P ≤ .05) in countermovement jump, in-water boost, and bench-press and full-squat strength. All training groups significantly increased (P ≤ .001) ThS. Moreover, all training groups improved (P ≤ .05) in-water agility (except dry-land strength training) and swimming sprint performance (except in-water-specific strength training and ballistic training). Conclusion: The findings indicate that the 18-week in-season strength training programs induced improvements in strength and specific water polo skills. The eccentric-overload training resulted in greater improvements in muscle strength (in both upper and lower body) and ThS than the other training methods examined in the study.

The authors are with the Physical Performance and Sports Research Center, Universidad Pablo de Olavide, Seville, Spain. Pareja Blanco and De Villarreal are also with the Dept of Sport and Computer Sciences, Faculty of Sport Sciences at the university.

Pareja Blanco (fparbla@upo.es) is corresponding author.
  • 1.

    Botonis PG, Toubekis AG, Platanou TI. Physiological and tactical on-court demands of water polo. J Strength Cond Res. 2019;33(11):31883199. PubMed ID: 29912072 doi:10.1519/JSC.0000000000002680

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    D’Auria S, Gabbett T. A time-motion analysis of international women’s water polo match play. Int J Sports Physiol Perform. 2008;3(3):305319. PubMed ID: 19211943 doi:10.1123/ijspp.3.3.305

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Platanou T. On-water and dryland vertical jump in water polo players. J Sports Med Phys Fitness. 2005;45(1):2631. PubMed ID: 16208287

  • 4.

    Platanou T, Varamenti E. Relationships between anthropometric and physiological characteristics with throwing velocity and on water jump of female water polo players. J Sports Med Phys Fitness. 2011;51(2):185193. PubMed ID: 21681151

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Ramos Veliz R, Requena B, Suarez-Arrones L, Newton RU, Saez de Villarreal E. Effects of 18-week in-season heavy-resistance and power training on throwing velocity, strength, jumping, and maximal sprint swim performance of elite male water polo players. J Strength Cond Res. 2014;28(4):10071014. PubMed ID: 24077370 doi:10.1519/JSC.0000000000000240

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    de Villarreal ES, Suarez-Arrones L, Requena B, Haff GG, Ramos Veliz R. Enhancing performance in professional water polo players: dryland training, in-water training, and combined training. J Strength Cond Res. 2015;29(4):10891097. PubMed ID: 25259469

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    de Villarreal ES, Suarez-Arrones L, Requena B, Haff GG, Ramos-Veliz R. Effects of dry-land vs. in-water specific strength training on professional male water polo players’ performance. J Strength Cond Res. 2014;28(11):31793187. PubMed ID: 24818541 doi:10.1519/JSC.0000000000000514

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Veliz RR, Suarez-Arrones L, Requena B, Haff GG, Feito J, Saez de Villarreal E. Effects of in-competitive season power-oriented and heavy resistance lower-body training on performance of elite female water polo players. J Strength Cond Res. 2015;29(2):458465. PubMed ID: 25144134 doi:10.1519/JSC.0000000000000643

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Vogt M, Hoppeler HH. Eccentric exercise: mechanisms and effects when used as training regime or training adjunct. J Appl Physiol. 2014;116(11):14461454. doi:10.1152/japplphysiol.00146.2013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Tesch PA, Ekberg A, Lindquist DM, Trieschmann JT. Muscle hypertrophy following 5-week resistance training using a non-gravity-dependent exercise system. Acta Physiol Scand. 2004;180(1):8998. PubMed ID: 14706117 doi:10.1046/j.0001-6772.2003.01225.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Chiu LZ, Salem GJ. Comparison of joint kinetics during free weight and flywheel resistance exercise. J Strength Cond Res. 2006;20(3):555562. PubMed ID: 16937968

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Rittweger J, Felsenberg D, Maganaris C, Ferretti JL. Vertical jump performance after 90 days bed rest with and without flywheel resistive exercise, including a 180 days follow-up. Eur J Appl Physiol. 2007;100(4):427436. PubMed ID: 17406887 doi:10.1007/s00421-007-0443-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Norrbrand L, Fluckey JD, Pozzo M, Tesch PA. Resistance training using eccentric overload induces early adaptations in skeletal muscle size. Eur J Appl Physiol. 2008;102(3):271281. PubMed ID: 17926060 doi:10.1007/s00421-007-0583-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    de Hoyo M, Sanudo B, Carrasco L, et al. Effects of 10-week eccentric overload training on kinetic parameters during change of direction in football players. J Sports Sci. 2016;34(14):13801387. PubMed ID: 26963941 doi:10.1080/02640414.2016.1157624

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Walker S, Blazevich AJ, Haff GG, Tufano JJ, Newton RU, Hakkinen K. Greater strength gains after training with accentuated eccentric than traditional isoinertial loads in already strength-trained men. Front Physiol. 2016;7:149. PubMed ID: 27199764 doi:10.3389/fphys.2016.00149

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Chtourou H, Hammouda O, Souissi H, Chamari K, Chaouachi A, Souissi N. Diurnal variations in physical performances related to football in young soccer players. Asian J Sports Med. 2012;3(3):139144. PubMed ID: 23012632 doi:10.5812/asjsm.34604

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Sanchez-Medina L, Gonzalez-Badillo JJ. Velocity loss as an indicator of neuromuscular fatigue during resistance training. Med Sci Sports Exerc. 2011;43(9):17251734. PubMed ID: 21311352

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Sanchez-Medina L, Perez CE, Gonzalez-Badillo JJ. Importance of the propulsive phase in strength assessment. Int J Sports Med. 2010;31(2):123129. PubMed ID: 20222005 doi:10.1055/s-0029-1242815

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Hedges LV, Olkin I. Estimation of a single effect size: parametric and nonparametric method. In: Hedges LV, Olkin I. Statistical Methods for Meta-Analysis. San Diego, CA: Academic Press; 1985.

    • Search Google Scholar
    • Export Citation
  • 21.

    Arabatzi F, Kellis E, Saez-Saez De Villarreal E. Vertical jump biomechanics after plyometric, weight lifting, and combined (weight lifting + plyometric) training. J Strength Cond Res. 2010;24(9):24402448. PubMed ID: 20706157 doi:10.1519/JSC.0b013e3181e274ab

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    de Villarreal ES, Gonzalez-Badillo JJ, Izquierdo M. Low and moderate plyometric training frequency produces greater jumping and sprinting gains compared with high frequency. J Strength Cond Res. 2008;22(3):715725. PubMed ID: 18438249 doi:10.1519/JSC.0b013e318163eade

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Sanders RH. A model of kinematic variables determining height achieved in water polo boosts. J Appl Biomech. 1999;15(3):270283. doi:10.1123/jab.15.3.270

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Berg HE, Tesch A. A gravity-independent ergometer to be used for resistance training in space. Aviat Space Environ Med. 1994;65(8):752756. PubMed ID: 7980338

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Schoenfeld BJ, Ogborn DI, Vigotsky AD, Franchi MV, Krieger JW. Hypertrophic effects of concentric vs. eccentric muscle actions: a systematic review and meta-analysis. J Strength Cond Res. 2017;31(9):25992608. PubMed ID: 28486337 doi:10.1519/JSC.0000000000001983

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Nunez Sanchez FJ, Saez de Villarreal E. Does flywheel paradigm training improve muscle volume and force? A meta-analysis. J Strength Cond Res. 2017;31(11):31773186. PubMed ID: 29068866

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Butterfield TA, Leonard TR, Herzog W. Differential serial sarcomere number adaptations in knee extensor muscles of rats is contraction type dependent. J Appl Physiol. 2005;99(4):13521358. doi:10.1152/japplphysiol.00481.2005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Gross M, Luthy F, Kroell J, Muller E, Hoppeler H, Vogt M. Effects of eccentric cycle ergometry in alpine skiers. Int J Sports Med. 2010;31(8):572576. PubMed ID: 20464646 doi:10.1055/s-0030-1254082

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Aspenes ST, Karlsen T. Exercise-training intervention studies in competitive swimming. Sports Med. 2012;42(6):527543. PubMed ID: 22587822 doi:10.2165/11630760-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Silva AJ, Costa AM, Oliveira PM, et al. The use of neural network technology to model swimming performance. J Sports Sci Med. 2007;6(1):117125. PubMed ID: 24149233

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Tanaka H, Costill DL, Thomas R, Fink WJ, Widrick JJ. Dry-land resistance training for competitive swimming. Med Sci Sports Exerc. 1993;25(8):952959. PubMed ID: 8371657 doi:10.1249/00005768-199308000-00011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Suchomel TJ, Nimphius S, Stone MH. The importance of muscular strength in athletic performance. Sports Med. 2016;46(10):14191449. PubMed ID: 26838985 doi:10.1007/s40279-016-0486-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 639 639 103
Full Text Views 25 25 0
PDF Downloads 21 21 0