On- Versus Off-Bike Power Training in Professional Cyclists: A Randomized Controlled Trial

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: To compare the effectiveness of resistance power training (RPT, training with the individualized load and repetitions that maximize power output) and cycling power training (CPT, short sprint training) in professional cyclists. Methods: The participants (20 [2] y, peak oxygen uptake 78.0 [4.4] mL·kg−1·min−1) were randomly assigned to perform CPT (n = 8) or RPT (n = 10) in addition to their usual training regime for 7 weeks (2 sessions/wk). The training loads were continuously registered using the session rating of perceived exertion. The outcomes included endurance performance (8-min time trial and incremental test), as well as measures of muscle strength/power (1-repetition maximum and mean maximum propulsive power on the squat, hip thrust, and lunge exercises) and body composition (assessed by dual-energy X-ray absorptiometry). Results: No between-group differences were found for training loads or for any outcome (P > .05). Both interventions resulted in increased time-trial performance, as well as in improvements in other endurance-related outcomes (ie, ventilatory threshold, respiratory compensation point; P < .05). A significant or quasi-significant increase (P = .068 and .047 for CPT and RPT, respectively) in bone mineral content was observed after both interventions. A significant reduction in fat mass (P = .017), along with a trend (P = .059) toward a reduced body mass, was observed after RPT, but not CPT (P = .076 for the group × time interaction effect). Significant benefits (P < .05) were also observed for most strength-related outcomes after RPT, but not CPT. Conclusion: CPT and RPT are both effective strategies for the improvement of endurance performance and bone health in professional cyclists, although the latter tends to result in greater improvements in body composition and muscle strength/power.

Valenzuela, Gil-Cabrera, and Talavera contributed equally to this work. Valenzuela is with the Dept of Systems Biology, University of Alcalá, Madrid, Spain; and the Dept of Sport and Health, Spanish Agency for Health Protection in Sport (AEPSAD), Madrid, Spain. Gil-Cabrera, Talavera, Alejo, Montalvo-Pérez, Rincón-Castanedo, Lucia, and Barranco-Gil are with the Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain. Rodríguez-Hernández is with the Team Caja Rural—Seguros RGA, Navarra, Spain. Lucia is also with the Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain.

Barranco-Gil (david.barranco@universidadeuropea.es) is corresponding author.
  • 1.

    Cormie P, McGuigan MR, Newton RU. Developing maximal neuromuscular power. Sports Med. 2011;41(2):125146. doi:10.2165/11538500-000000000-00000

  • 2.

    Cormie P, McGuigan M, Newton RU. Developing maximal neuromuscular power. Part 2—Training considerations for improving maximal power production. Sports Med. 2011;41(2):125146. doi:10.2165/11538500-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Beattie K, Kenny IC, Lyons M, Carson BP. The effect of strength training on performance in endurance athletes. Sports Med. 2014;44(6):845865. doi:10.1007/s40279-014-0157-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Berryman N, Mujika I, Arvisais D, Roubeix M, Binet C, Bosquet L. Strength training for middle- and long-distance performance: a meta-analysis. Int J Sports Physiol Perform. 2018;13(1):5764. doi:10.1123/ijspp.2017-0032

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Rønnestad BR, Mujika I. Optimizing strength training for running and cycling endurance performance: a review. Scand J Med Sci Sport. 2014;24(4):603612. doi:10.1111/sms.12104

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Mujika I, Rønnestad BR, Martin DT. Effects of increased muscle strength and muscle mass on endurance-cycling performance. Int J Sports Physiol Perform. 2016;11(3):283289. PubMed ID: 27068517 doi:10.1123/ijspp.2015-0405

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Loturco I, Nakamura F, Kobal R, et al. . Traditional periodization versus optimum training load applied to soccer players: effects on neuromuscular abilities. Int J Sports Med. 2016;37(13):10511059. PubMed ID: 27706551 doi:10.1055/s-0042-107249

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Rauch J, Loturco I, Cheesman N, et al. . Similar strength and power adaptations between two different velocity-based training regimens in collegiate female volleyball players. Sports. 2018;6(4):163. doi:10.3390/sports6040163

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Sarabia JM, Moya-Ramón M, Hernández-Davó JL, Fernandez-Fernandez J, Sabido R. The effects of training with loads that maximise power output and individualised repetitions vs. traditional power training. PLoS One. 2017;12(10):e0186601. doi:10.1371/journal.pone.0186601

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Sloth M, Sloth D, Overgaard K, Dalgas U. Effects of sprint interval training on VO2max and aerobic exercise performance: a systematic review and meta-analysis. Scand J Med Sci Sport. 2013;23(6):e341e352. doi:10.1111/sms.12092

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Gist NH, Fedewa MV, Dishman RK, Cureton KJ. Sprint interval training effects on aerobic capacity: a systematic review and meta-analysis. Sports Med. 2014;44(2):269279. doi:10.1007/s40279-013-0115-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Kristoffersen M, Sandbakk Ø, Rønnestad BR, Gundersen H. Comparison of short-sprint and heavy strength training on cycling performance. Front Physiol. 2019;10:1132. doi:10.3389/fphys.2019.01132

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    De Pauw K, Roelands B, Cheung SS, De Geus B, Rietjens G, Meeusen R. Guidelines to classify subject groups in sport-science research. Int J Sports Physiol Perform. 2013;8(2):111122. doi:10.1123/ijspp.8.2.111

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Sánchez-Medina L, González-Badillo JJ. Velocity loss as an indicator of neuromuscular fatigue during resistance training. Med Sci Sports Exerc. 2011;43(9):17251734. doi:10.1249/MSS.0b013e318213f880

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    de Hoyo M, Núñez FJ, Sañudo B, et al. . Predicting loading intensity measuring velocity in barbell hip thrust exercise [published online ahead of print April 17, 2019]. J Strength Cond Res. doi:10.1519/jsc.0000000000003159

    • Search Google Scholar
    • Export Citation
  • 16.

    Conceição F, Fernandes J, Lewis M, Gonzaléz-Badillo JJ, Jimenéz-Reyes P. Movement velocity as a measure of exercise intensity in three lower limb exercises. J Sports Sci. 2016;34(12):10991106. PubMed ID: 26395837 doi:10.1080/02640414.2015.1090010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Lillo-Bevia J, Pallarés J. Validity and reliability of the cycleops hammer cycle ergometer. Int J Sports Physiol Perform. 2018;13(7):853859. doi:10.1123/ijspp.2017-0403

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Klika R J, Alderdice MS, Kvale JJ, Kearmey JT. Efficacy of cycling training based on a power field test. J Strength Cond Res. 2007;21(1):265269. PubMed ID: 17313274 doi:10.1519/00124278-200702000-00047

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Sanders D, Taylor RJ, Myers T, Akubat I. A field-based cycling test to assess predictors of endurance performance and establishing training zones [published online ahead of print March 25, 2017]. J Strength Cond Res. doi:10.1519/jsc.0000000000001910

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Argentin S, Hausswirth C, Bernard T, et al. . Relation between preferred and optimal cadences during two hours of cycling in triathletes. Br J Sports Med. 2006;40(4):293298. PubMed ID: 16556781 doi:10.1136/bjsm.2005.020487

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Bieuzen F, Lepers R, Vercruyssen F, Hausswirth C, Brisswalter J. Muscle activation during cycling at different cadences: effect of maximal strength capacity. J Electromyogr Kinesiol. 2007;17(6):731738. PubMed ID: 16996277 doi:10.1016/j.jelekin.2006.07.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Arney BE, Glover R, Fusco A, et al. . Comparison of RPE (rating of perceived exertion) scales for session RPE. Int J Sports Physiol Perform. 2019;14( 7):994996. PubMed ID: 30569764 doi:10.1123/ijspp.2018-0637

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    van Erp T, Foster C, de Koning JJ. Relationship between various training-load measures in elite cyclists during training, road races, and time trials. Int J Sports Physiol Perform. 2019;14( 4):493500. doi:10.1123/ijspp.2017-0722

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Aagaard P, Andersen JL, Bennekou M, et al. . Effects of resistance training on endurance capacity and muscle fiber composition in young top-level cyclists. Scand J Med Sci Sport. 2011;21(6):e298e307. doi:10.1111/j.1600-0838.2010.01283.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Rønnestad BR, Hansen J, Hollan I, Ellefsen S. Strength training improves performance and pedaling characteristics in elite cyclists. Scand J Med Sci Sport. 2015;25(1):e89e98. doi:10.1111/sms.12257

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Doma K, Deakin GB, Bentley DJ. Implications of impaired endurance performance following single bouts of resistance training: an alternate concurrent training perspective. Sports Med. 2017;47( 11):21872200. doi:10.1007/s40279-017-0758-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Pareja-Blanco F, Rodríguez-Rosell D, Sánchez-Medina L, et al. . Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scand J Med Sci Sport. 2016;(1998):112. doi:10.1111/sms.12678

    • Search Google Scholar
    • Export Citation
  • 28.

    Pareja-Blanco F, Alcazar J, Sánchez-Valdepeñas J, et al. . Velocity loss as a critical variable determining the adaptations to strength training. Med Sci Sports Exerc2020;52(8):17521762. doi:10.1249/mss.0000000000002295

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Jakeman J, Adamson S, Babraj J. Extremely short duration high-intensity training substantially improves endurance performance in triathletes. Appl Physiol Nutr Metab. 2012;37( 5):976981. PubMed ID: 22857018 doi:10.1139/h2012-083

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Rønnestad BR, Hansen J, Vegge G, Tønnessen E, Slettaløkken G. Short intervals induce superior training adaptations compared with long intervals in cyclists—an effort-matched approach. Scand J Med Sci Sport. 2015;25( 2):143151. doi:10.1111/sms.12165

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Rønnestad BR, Hansen J, Nygaard H, Lundby C. Superior performance improvements in elite cyclists following short-interval vs effort-matched long-interval training. Scand J Med Sci Sport. 2020;30( 5):849857. doi:10.1111/sms.13627

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Olmedillas H, González-Agüero A, Moreno LA, Casajus JA, Vicente-Rodríguez G. Cycling and bone health: a systematic review. BMC Med. 2012;10(1):68. doi:10.1186/1741-7015-10-168

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Andersen OK, Clarsen B, Garthe I, Mørland M, Stensrud T. Bone health in elite Norwegian endurance cyclists and runners: a cross-sectional study. BMJ Open Sport Exerc Med. 2018;4(1):17. doi:10.1136/bmjsem-2018-000449

    • Search Google Scholar
    • Export Citation
  • 34.

    Smathers AM, Bemben MG, Bemben DA. Bone density comparisons in male competitive road cyclists and untrained controls. Med Sci Sports Exerc. 2009;41( 2):290296. PubMed ID: 19127198 doi:10.1249/MSS.0b013e318185493e

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Mathis S, Caputo J. Resistance training is associated with higher lumbar spine and hip bone mineral density in competitive male cyclists. J Strength Cond Res. 2018;32(1):274279. PubMed ID: 28858058 doi:10.1519/JSC.0000000000002209

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Avin K, Bloomfiield S, Gross T, Warden SJ. Biomechanical aspects of the muscle-bone interaction. Curr Osteoporos Rep. 2015;13(1):18. PubMed ID: 25515697 doi:10.1007/s11914-014-0244-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 643 643 131
Full Text Views 26 26 2
PDF Downloads 22 22 2