Effect of Acute Interset Foot Cooling on Lower Limb Strength Training Workout

in International Journal of Sports Physiology and Performance
View More View Less
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: The authors investigated the effect of foot cooling (FC) between sets in a leg press pyramid workout with resistance-trained participants. Methods: A total of 12 resistance-trained men (age = 21.8 [0.6] y; training experience = 1.7 [1] y) performed a pyramid workout, including 4 sets of 85% to 90% 1-repetition maximum leg press exercise to exhaustion with interset FC or noncooling in a repeated-measures crossover design separated by 5 days. The authors immersed the participants’ feet in 10°C water for 2.5 minutes between sets. Results: Two-way repeated-measures analysis of variance revealed that FC elicited significantly higher repetitions and electromyography (EMG) values of the vastus lateralis (simple main effect of condition) than did noncooling (P < .05) in the second (repetitions: 11 [3.5] vs 7.75 [3.2]; EMG: 63.4% [19.4%] vs 54.5% [18.4%]), third (repetitions: 8.9 [3.2] vs 6.4 [2.1]; EMG: 71.5% [17.4%] vs 60.6% [19.4%]), and fourth (repetitions: 7.5 [2.7] vs 5.1 [2.2]; EMG: 75.2% [19.6%] vs 59.3% [23.5%]) sets. The authors also detected a simple main effect of set in the FC and noncooling conditions on repetitions (P < .05) and in the FC condition on the vastus lateralis EMG values. Although the authors observed no time × trial interactions for the rating of perceived exertion, the authors observed main effects on the sets (7.7–9.6 vs 7.9–9.3, P < .05). Conclusions: Interset FC provides an ergogenic effect on a leg press pyramid workout and may offset fatigue, as indicated by higher repetitions and EMG response, without increasing perceived exertion.

Cai is with the Center for Physical and Health Education, Si Wan College, National Sun Yat-sen University, Kaohsiung City, Taiwan. Wang is with the Graduate Inst of Sports Pedagogy, University of Taipei, Taipei, Taiwan. Huang is with the Optimum Kinetics Inst, Kaohsiung City, Taiwan. Wu is with the Dept of Leisure and Sports Management, Cheng Shiu University, Kaohsiung City, Taiwan.

Wu (sugicalwu@gmail.com) is corresponding author.
  • 1.

    Grahn DA, Cao VH, Nguyen CM, Liu MT, Heller HC. Work volume and strength training responses to resistive exercise improve with periodic heat extraction from the palm. J Strength Cond Res. 2012;26(9):25582569. PubMed ID: 22076097 doi:10.1519/JSC.0b013e31823f8c1a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Rhea MR, Alvar BA, Burkett LN, Ball SD. A meta-analysis to determine the dose response for strength development. Med Sci Sports Exerc. 2003;35(3):456464. PubMed ID: 12618576 doi:10.1249/01.MSS.0000053727.63505.D4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    McMaster DT, Gill N, Cronin J, McGuigan M. The development, retention and decay rates of strength and power in elite rugby union, rugby league and American football: a systematic review. Sports Med. 2013;43(5):367384. PubMed ID: 23529287 doi:10.1007/s40279-013-0031-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Galoza P, Sampaio-Jorge F, Machado M, Fonseca R, Silva PA. Resistance exercise inter-set cooling strategy: effect on performance and muscle damage. Int J Sports Physiol Perform. 2011;6(4):580584. PubMed ID: 21941011 doi:10.1123/ijspp.6.4.580

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Verducci FM. Interval cryotherapy decreases fatigue during repeated weight lifting. J Athl Train. 2000;35(4):422426. PubMed ID: 16558656

  • 6.

    Douris P, Mckenna R, Madigan K, Cesarski B, Costiera R, Lu M. Recovery of maximal isometric grip strength following cold immersion. J Strength Cond Res. 2003;17(3):509513. PubMed ID: 12930178

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Ruiz DH, Myrer JM, Durrant E, Fellingham GW. Cryotherapy and sequential exercise bouts following cryotherapy on concentric and eccentric strength in the quadriceps. J Athl Train. 1993;28(4):320323. PubMed ID: 16558247

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Cross KM, Wilson RW, Perrin DH. Functional performance following an ice immersion to the lower extremity. J Athl Train. 1996;31(2):113116. PubMed ID: 16558383

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Kwon YS, Robergs RA, Kravitz LR, Gurney BA, Mermier CM, Schneider SM. Palm cooling delays fatigue during high-intensity bench press exercise. Med Sci Sports Exerc. 2010;42(8):15571565. PubMed ID: 20139781 doi:10.1249/MSS.0b013e3181d34a53

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Kwon YS, Robergs RA, Mermier CM, Schneider SM, Gurney AB. Palm cooling and heating delays fatigue during resistance exercise in women. J Strength Cond Res. 2015;29(8):22612269. PubMed ID: 23722108 doi:10.1519/JSC.0b013e31829cef4e

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Caruso JF, Barbosa A, Erickson L, et al. Intermittent palm cooling’s impact on resistive exercise performance. Int J Sports Med. 2015;36(10):814821. PubMed ID: 26038879 doi:10.1055/s-0035-1547264

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Palmieri-Smith RM, Leonard-Frye JL, Garrison CJ, Weltman A, Ingersoll CD. Peripheral joint cooling increases spinal reflex excitability and serum norepinephrine. Int J Neurosci. 2007;117(2):229242. doi:10.1080/00207450600582702

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Hopkins J, Ingersoll CD, Edwards J, Klootwyk TE. Cryotherapy and transcutaneous electric neuromuscular stimulation decrease arthrogenic muscle inhibition of the vastus medialis after knee joint effusion. J Athl Train. 2002;37(1):2531. PubMed ID: 12937440

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Ruddock AD, Tew GA, Purvis AJ. Effect of hand cooling on body temperature, cardiovascular and perceptual responses during recumbent cycling in a hot environment. J Sports Sci. 2017; 35(14):14661474. PubMed ID: 27494595 doi:10.1080/02640414.2016.1215501

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription. 9th ed. Philadelphia, PA: Lippincott, Williams & Wilkins; 2014;1934.

    • Search Google Scholar
    • Export Citation
  • 16.

    Siqueira AF, Vieira A, Bottaro M, et al. Multiple cold-water immersions attenuate muscle damage but not alter systemic inflammation and muscle function recovery: a parallel randomized controlled trial. Sci Rep. 2018;8(1):10961. PubMed ID: 30026562 doi:10.1038/s41598-018-28942-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Doan BK, Newton RU, Marsit JL, et al. Effects of increased eccentric loading on bench press 1RM. J Strength Cond Res. 2002;16(1):913. PubMed ID: 11834100

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Salatto RW, Arevalo JA, Brown LE, Wiersma LD, Coburn JW. Caffeine’s effects on an upper-body resistance exercise workout. J Strength Cond Res. 2020;34(6):16431648. PubMed ID: 29933355 doi:10.1519/JSC.0000000000002697

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Perkins D, Wilson GV, Kerr JH. The effects of elevated arousal and mood on maximal strength performance in athletes. J Appl Sport Psychol. 2001;13(3):239259. doi:10.1080/104132001753144392

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    España RA, Schmeichel BE, Berridge CW. Norepinephrine at the nexus of arousal, motivation and relapse. Brain Res. 2016;1641(pt B):207216. PubMed ID: 26773688 doi:10.1016/j.brainres.2016.01.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Zając A, Chalimoniuk M, Maszczyk A, Gołaś A, Lngfort J. Central and peripheral fatigue during resistance exercise—a critical review. J Hum Kinet. 2015;49(1):159169. doi:10.1515/hukin-2015-0118

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Taylor JL, Amann M, Duchateau J, Meeusen R, Rice CL. Neural contributions to muscle fatigue: from the brain to the muscle and back again. Med Sci Sports Exerc. 2016;48(11): 22942306. PubMed ID: 27003703 doi:10.1249/MSS.0000000000000923

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Lagally KM, Robertson RJ, Gallagher KI, et al. Perceived exertion, electromyography, and blood lactate during acute bouts of resistance exercise. Med Sci Sports Exerc. 2002;34(3):552559. PubMed ID: 11880823 doi:10.1097/00005768-200203000-00025

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 128 128 128
Full Text Views 6 6 6
PDF Downloads 5 5 5