Relationship Between Wellness Index and Internal Training Load in Soccer: Application of a Machine Learning Model

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Enrico Perri
Search for other papers by Enrico Perri in
Current site
Google Scholar
PubMed
Close
,
Carlo Simonelli
Search for other papers by Carlo Simonelli in
Current site
Google Scholar
PubMed
Close
,
Alessio Rossi
Search for other papers by Alessio Rossi in
Current site
Google Scholar
PubMed
Close
,
Athos Trecroci
Search for other papers by Athos Trecroci in
Current site
Google Scholar
PubMed
Close
,
Giampietro Alberti
Search for other papers by Giampietro Alberti in
Current site
Google Scholar
PubMed
Close
, and
F. Marcello Iaia
Search for other papers by F. Marcello Iaia in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: To investigate the relationship between the training load (TL = rate of perceived exertion × training time) and wellness index (WI) in soccer. Methods: The WI and TL data were recorded from 28 subelite players (age = 20.9 [2.4] y; height = 181.0 [5.8] cm; body mass = 72.0 [4.4] kg) throughout the 2017/2018 season. Predictive models were constructed using a supervised machine learning method that predicts the WI according to the planned TL. The validity of our predictive model was assessed by comparing the classification’s accuracy with the one computed from a baseline that randomly assigns a class to an example by respecting the distribution of classes (B1). Results: A higher TL was reported after the games and during match day (MD)-5 and MD-4, while a higher WI was recorded on the following days (MD-6, MD-4, and MD-3, respectively). A significant correlation was reported between daily TL (TLMDi) and WI measured the day after (WIMDi+1) (r = .72, P < .001). Additionally, a similar weekly pattern seems to be repeating itself throughout the season in both TL and WI. Nevertheless, the higher accuracy of ordinal regression (39% [2%]) compared with the results obtained by baseline B1 (21% [1%]) demonstrated that the machine learning approach used in this study can predict the WI according to the TL performed the day before (MD<i). Conclusion: The machine learning technique can be used to predict the WI based on a targeted weekly TL. Such an approach may contribute to enhancing the training-induced adaptations, maximizing the players’ readiness and reducing the potential drops in performance associated with poor wellness scores.

Perri, Trecroci, Alberti, and Iaia are with the Dept of Biomedical Science for Health, University of Milan, Milan, Italy. Simonelli is with the Dept of Medicine and Surgery, University of Insubria, Varese, Italy. Rossi is with the Dept of Computer Science, University of Pisa, Pisa, Italy.

Perri (enrico.perri@unimi.it) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Iaia FM, Perez-Gomez J, Thomassen M, Nordsborg NB, Hellsten Y, Bangsbo J. Relationship between performance at different exercise intensities and skeletal muscle characteristics. J Appl Physiol. 2011;110(6):15551563. PubMed ID: 21436467 doi:10.1152/japplphysiol.00420.2010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Bangsbo J, Mohr M, Krustrup P. Physical and metabolic demands of training and match-play in the elite football player. J Sports Sci. 2006;24(7):665674. PubMed ID: 16766496 doi:10.1080/02640410500482529

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Barnes C, Archer DT, Hogg B, Bush M, Bradley PS. The evolution of physical and technical performance parameters in the English Premier League. Int J Sports Med. 2014;35(13):10951100. PubMed ID: 25009969 doi:10.1055/s-0034-1375695

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Haddad M, Chaouachi A, Wong del P, et al. Influence of fatigue, stress, muscle soreness and sleep on perceived exertion during submaximal effort. Physiol Behav. 2013;119:185189. PubMed ID: 23816982 doi:10.1016/j.physbeh.2013.06.016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Foster C. Monitoring training in athletes with reference to overtraining syndrome. Med Sci Sports Exerc. 1998;30(7):11641168. PubMed ID: 9662690 doi:10.1097/00005768-199807000-00023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Impellizzeri FM, Rampinini E, Coutts AJ, Sassi A, Marcora SM. Use of RPE-based training load in soccer. Med Sci Sports Exerc. 2004;36(6):10421047. PubMed ID: 15179175 doi:10.1249/01.MSS.0000128199.23901.2F

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Raglin JS, Morgan WP. Development of a scale for use in monitoring training-induced distress in athletes. Int J Sports Med. 1994;15(2):8488. PubMed ID: 8157374 doi:10.1055/s-2007-1021025

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Rushall BS. A tool for measuring stress tolerance in elite athletes. J Appl Sport Psychol. 1990;2(1):5166. doi:10.1080/10413209008406420

  • 9.

    Kentta G, Hassmen P. Overtraining and recovery. A conceptual model. Sports Med 1998;26(1):116. PubMed ID: 9739537 doi:10.2165/00007256-199826010-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Coutts AJ, Reaburn P. Monitoring changes in rugby league players’ perceived stress and recovery during intensified training. Percept Mot Skills. 2008;106(3):904916. PubMed ID: 18712214 doi:10.2466/pms.106.3.904-916

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Gallo TF, Cormack SJ, Gabbett TJ, Lorenzen CH. Pre-training perceived wellness impacts training output in Australian football players. J Sports Sci. 2016;34(15):14451451. PubMed ID: 26637525 doi:10.1080/02640414.2015.1119295

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Gallo TF, Cormack SJ, Gabbett TJ, Lorenzen CH. Self-reported wellness profiles of professional Australian football players during the competition phase of the season. J Strength Cond Res. 2017;31(2):495502. PubMed ID: 27243912 doi:10.1519/JSC.0000000000001515

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Gastin PB, Meyer D, Robinson D. Perceptions of wellness to monitor adaptive responses to training and competition in elite Australian football. J Strength Cond Res. 2013;27(9):25182526. PubMed ID: 23249820 doi:10.1519/JSC.0b013e31827fd600

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Govus AD, Coutts A, Duffield R, Murray A, Fullagar H. Relationship between pretraining subjective wellness measures, player load, and rating-of-perceived-exertion training load in American college football. Int J Sports Physiol Perform. 2018;13(1):95101. PubMed ID: 28488913 doi:10.1123/ijspp.2016-0714

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Clemente FM, Mendes B, Palao JM, et al. Seasonal player wellness and its longitudinal association with internal training load: study in elite volleyball. J Sports Med Phys Fitness. 2019;59(3):345351. PubMed ID: 29619798 doi:10.23736/S0022-4707.18.08312-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Lathlean TJH, Gastin PB, Newstead SV, Finch CF. A prospective cohort study of load and wellness (sleep, fatigue, soreness, stress, and mood) in elite junior Australian football players. Int J Sports Physiol Perform. 2019;14(6):829840. PubMed ID: 30569785 doi:10.1123/ijspp.2018-0372

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Moalla W, Fessi MS, Farhat F, Nouira S, Wong DP, Dupont G. Relationship between daily training load and psychometric status of professional soccer players. Res Sports Med. 2016;24(4):387394. PubMed ID: 27712094 doi:10.1080/15438627.2016.1239579

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Jaspers A, De Beeck TO, Brink MS, et al. Relationships between the external and internal training load in professional soccer: what can we learn from machine learning? Int J Sports Physiol Perform. 2018;13(5):625630. PubMed ID: 29283691 doi:10.1123/ijspp.2017-0299

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Rossi A, Perri E, Pappalardo L, Cintia P, Iaia F. Relationship between external and internal workloads in elite soccer players: comparison between rate of perceived exertion and training load. Appl Sci. 2019;9(23):5174. doi:10.3390/app9235174

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Bartlett JD, O’Connor F, Pitchford N, Torres-Ronda L, Robertson SJ. Relationships between internal and external training load in team-sport athletes: evidence for an individualized approach. Int J Sports Physiol Perform. 2017;12(2):230234. PubMed ID: 27194668 doi:10.1123/ijspp.2015-0791

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    McLean BD, Coutts AJ, Kelly V, McGuigan MR, Cormack SJ. Neuromuscular, endocrine, and perceptual fatigue responses during different length between-match microcycles in professional rugby league players. Int J Sports Physiol Perform. 2010;5(3):367383. PubMed ID: 20861526 doi:10.1123/ijspp.5.3.367

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Hooper SL, Mackinnon LT. Monitoring overtraining in athletes. Recommendations. Sports Med. 1995;20(5):321327. PubMed ID: 8571005 doi:10.2165/00007256-199520050-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Murray NB, Gabbett TJ, Townshend AD, Blanch P. Calculating acute:chronic workload ratios using exponentially weighted moving averages provides a more sensitive indicator of injury likelihood than rolling averages. Br J Sports Med. 2017;51(9):749754. PubMed ID: 28003238 doi:10.1136/bjsports-2016-097152

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Winship C, Mare RD. Regression-models with ordinal variables. Am Sociol Rev. 1984;49(4):512525. doi:10.2307/2095465

  • 25.

    Barnett A. Using recovery modalities between training sessions in elite athletes: does it help? Sports Med. 2006;36(9):781796. PubMed ID: 16937953 doi:10.2165/00007256-200636090-00005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Marcora SM, Staiano W. The limit to exercise tolerance in humans: mind over muscle? Eur J Appl Physiol. 2010;109(4):763770. PubMed ID: 20221773 doi:10.1007/s00421-010-1418-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Buchheit M, Racinais S, Bilsborough JC, et al. Monitoring fitness, fatigue and running performance during a pre-season training camp in elite football players. J Sci Med Sport. 2013;16(6):550555. PubMed ID: 23332540 doi:10.1016/j.jsams.2012.12.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Malone JJ, Di Michele R, Morgans R, Burgess D, Morton JP, Drust B. Seasonal training-load quantification in elite English premier league soccer players. Int J Sports Physiol Perform. 2015;10(4):489497. PubMed ID: 25393111 doi:10.1123/ijspp.2014-0352

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Martín-García A, Gómez Díaz A, Bradley PS, Morera F, Casamichana D. Quantification of a professional football team’s external load using a microcycle structure. J Strength Cond Res. 2018;32(12):35113518. PubMed ID: 30199452 doi:10.1519/JSC.0000000000002816

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2840 901 31
Full Text Views 72 8 0
PDF Downloads 75 16 1