Running at Increasing Intensities in the Heat Induces Transient Gut Perturbations

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Alice M. Wallett
Search for other papers by Alice M. Wallett in
Current site
Google Scholar
PubMed
Close
,
Naroa Etxebarria
Search for other papers by Naroa Etxebarria in
Current site
Google Scholar
PubMed
Close
,
Nicole A. Beard
Search for other papers by Nicole A. Beard in
Current site
Google Scholar
PubMed
Close
,
Philo U. Saunders
Search for other papers by Philo U. Saunders in
Current site
Google Scholar
PubMed
Close
,
Marijke Welvaert
Search for other papers by Marijke Welvaert in
Current site
Google Scholar
PubMed
Close
,
Julien D. Périard
Search for other papers by Julien D. Périard in
Current site
Google Scholar
PubMed
Close
,
Andrew J. McKune
Search for other papers by Andrew J. McKune in
Current site
Google Scholar
PubMed
Close
, and
David B. Pyne
Search for other papers by David B. Pyne in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: The risk of exercise-induced endotoxemia is increased in the heat and is primarily attributable to changes in gut permeability resulting in the translocation of lipopolysaccharides (LPS) into the circulation. The purpose of this study was to quantify the acute changes in gut permeability and LPS translocation during submaximal continuous and high-intensity interval exercise under heat stress. Methods: A total of 12 well-trained male runners (age 37 [7] y, maximal oxygen uptake [VO2max] 61.0 [6.8] mL·min−1·kg−1) undertook 2 treadmill runs of 2 × 15-minutes at 60% and 75% VO2max and up to 8 × 1-minutes at 95% VO2max in HOT (34°C, 68% relative humidity) and COOL (18°C, 57% relative humidity) conditions. Venous blood samples were collected at the baseline, following each running intensity, and 1 hour postexercise. Blood samples were analyzed for markers of intestinal permeability (LPS, LPS binding protein, and intestinal fatty acid–binding protein). Results: The increase in LPS binding protein following each exercise intensity in the HOT condition was 4% (5.3 μg·mL−1, 2.4–8.4; mean, 95% confidence interval, P < .001), 32% (4.6 μg·mL−1, 1.8–7.4; P = .002), and 30% (3.0 μg·mL−1, 0.03–5.9; P = .047) greater than in the COOL condition. LPS was 69% higher than baseline following running at 75% VO2max in the HOT condition (0.2 endotoxin units·mL−1, 0.1–0.4; P = .011). Intestinal fatty acid–binding protein increased 43% (2.1 ng·mL−1, 0.1–4.2; P = .04) 1 hour postexercise in HOT compared with the COOL condition. Conclusions: Small increases in LPS concentration during exercise in the heat and subsequent increases in intestinal fatty acid–binding protein and LPS binding protein indicate a capacity to tolerate acute, transient intestinal disturbance in well-trained endurance runners.

Wallett, Etxebarria, Welvaert, Périard, McKune, and Pyne are with the University of Canberra Research Inst for Sport and Exercise, Bruce, ACT, Australia. Wallett, Saunders, and Welvaert are with the Australian Inst of Sport, Bruce, ACT, Australia. Beard is with the University of Canberra, Faculty of Science and Technology, and the Centre for Research in Therapeutic Solutions, Bruce, ACT, Australia. McKune is also with the Discipline of Biokinetics, Exercise and Leisure Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.

Wallett (alice.wallett@canberra.edu.au) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Gisolfi CV. Is the GI system built for exercise? News Physiol Sci. 2000;15(3):114119. PubMed ID: 11390892 doi:10.1152/physiologyonline.2000.15.3.114

  • 2.

    Vargas N, Marino F. Heat stress, gastrointestinal permeability and interleukin-6 signaling—implications for exercise performance and fatigue. Temperature. 2016;3(2):240251. PubMed ID: 27857954 doi:10.1080/23328940.2016.1179380

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Pugh JN, Impey SG, Doran DA, Fleming SC, Morton JP, Close GL. Acute high-intensity interval running increases markers of gastrointestinal damage and permeability but not gastrointestinal symptoms. Appl Physiol Nutr Metab. 2017;42(9):941947. PubMed ID: 28511020 doi:10.1139/apnm-2016-0646

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Osborne JO, Stewart IB, Beagley KW, Minett GM. The effect of cycling in the heat on gastrointestinal-induced damage and neuromuscular fatigue. Eur J Appl Physiol. 2019;119(8):18291840. PubMed ID: 31175438 doi:10.1007/s00421-019-04172-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Zuhl M, Schneider S, Lanphere K, Conn C, Dokladny K, Moseley P. Exercise regulation of intestinal tight junction proteins. Br J Sports Med. 2014;48(12):980986. PubMed ID: 23134759 doi:10.1136/bjsports-2012-091585

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Peters HP, Zweers M, Backx FJ, et al. Gastrointestinal symptoms during long-distance walking. Med Sci Sports Exerc. 1999;31(6):767773. PubMed ID: 10378901 doi:10.1097/00005768-199906000-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    van Nieuwenhoven MA, Brouns F, Brummer RJ. The effect of physical exercise on parameters of gastrointestinal function. Neurogastroenterol Motil. 1999;11(6):431439. PubMed ID: 10583850 doi:10.1046/j.1365-2982.1999.00169.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Yeh YJ, Law LY, Lim CL. Gastrointestinal response and endotoxemia during intense exercise in hot and cool environments. Eur J Appl Physiol. 2013;113(6):15751583. PubMed ID: 23314685 doi:10.1007/s00421-013-2587-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Gill SK, Teixeira A, Rama L, et al. Circulatory endotoxin concentration and cytokine profile in response to exertional-heat stress during a multi-stage ultra-marathon competition. Exerc Immunol Rev. 2015;21:114128. PubMed ID: 25830597

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    van Wijck K, Lenaerts K, van Loon LJ, Peters WH, Buurman WA, Dejong CH. Exercise-induced splanchnic hypoperfusion results in gut dysfunction in healthy men. PLoS One. 2011;6(7):e22366. PubMed ID: 21811592 doi:10.1371/journal.pone.0022366

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Pyne DB, Guy JH, Edwards AM. Managing heat and immune stress in athletes with evidence-based strategies. Int J Sports Physiol Perform. 2014;9(5):744750. PubMed ID: 24911928 doi:10.1123/ijspp.2014-0232

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377381. PubMed ID: 7154893

  • 13.

    Gagge AP, Stolwijk JA, Saltin B. Comfort and thermal sensations and associated physiological responses during exercise at various ambient temperatures. Environ Res. 1969;2(3):209229. PubMed ID: 5788908 doi:10.1016/0013-9351(69)90037-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Ramanathan NL. A new weighting system for mean surface temperature of the human body. J Appl Physiol. 1964;19(5):531533. PubMed ID: 14173555 doi:10.1152/jappl.1964.19.3.531

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    West NP, Christophersen CT, Pyne DB, et al. Butyrylated starch increases colonic butyrate concentration but has limited effects on immunity in healthy physically active individuals. Exerc Immunol Rev. 2013;19:102119. PubMed ID: 23977723

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Hilsdale, NJ: Lawrence Erlbaum Associates; 1988.

  • 17.

    Brock-Utne JG, Gaffin SL, Wells MT, et al. Endotoxaemia in exhausted runners after a long-distance race. S Afr Med J. 1988;73(9):533536. PubMed ID: 3375945

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Kouvelioti R, Kurgan N, Falk B, Ward WE, Josse AR, Klentrou P. Cytokine and sclerostin response to high-intensity interval running versus cycling. Med Sci Sports Exerc. 2019;51(12):24582464. PubMed ID: 31246713 doi:10.1249/MSS.0000000000002076

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science. 1990;249(4975):14311433. PubMed ID: 1698311 doi:10.1126/science.1698311

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Lambert GP. Intestinal barrier dysfunction, endotoxemia, and gastrointestinal symptoms: The ‘canary in the coal mine’ during exercise-heat stress? Med Sport Sci. 2008;53:6173. PubMed ID: 19208999 doi:10.1159/000151550

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    McLellan TM, Selkirk GA, Wright HE, Rhind SG. The Importance of Aerobic Fitness in Extending Thermotolerance in Extreme Environments: Connecting Molecular Biology to the Whole Body Response. Toronto, Canada: Defence Research and Development Canada; 2009 .

    • Search Google Scholar
    • Export Citation
  • 22.

    Ding PH, Jin LJ. The role of lipopolysaccharide-binding protein in innate immunity: a revisit and its relevance to oral/periodontal health. J Periodontal Res. 2014;49(1):19. PubMed ID: 23601005 doi:10.1111/jre.12081

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Selkirk GA, McLellan TM, Wright HE, Rhind SG. Mild endotoxemia, NF-kappaB translocation, and cytokine increase during exertional heat stress in trained and untrained individuals. Am J Physiol Regul Integr Comp Physiol. 2008;295(2):R611R623. PubMed ID: 18565834 doi:10.1152/ajpregu.00917.2007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Selkirk GA, McLellan TM. Influence of aerobic fitness and body fatness on tolerance to uncompensable heat stress. J Appl Physiol. 2001;91(5):205563. PubMed ID: 11641344 doi:10.1152/jappl.2001.91.5.2055

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Sawka MN, Young AJ, Latzka WA, Neufer PD, Quigley MD, Pandolfet KB. Human tolerance to heat strain during exercise: influence of hydration. J Appl Physiol. 1992;73(1):368375. PubMed ID: 1506393 doi:10.1152/jappl.1992.73.1.368

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Ravanelli N, Gagnon D, Imbeault P, Jay O. A retrospective analysis to determine if exercise training‐induced thermoregulatory adaptations are mediated by increased fitness or heat acclimation [published online ahead of print March 2, 2020]. Exp Physiol.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Périard JD, Racinais S, Sawka MN. Adaptations and mechanisms of human heat acclimation: applications for competitive athletes and sports. Scand J Med Sci Sports. 2015;25(suppl 1):2038. PubMed ID: 25943654 doi:10.1111/sms.12408

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Mora-Rodriguez R, Del Coso J, Hamouti N, Estevez E, Ortega JF. Aerobically trained individuals have greater increases in rectal temperature than untrained ones during exercise in the heat at similar relative intensities. Eur J Appl Physiol. 2010;109(5):973981. PubMed ID: 20349316 doi:10.1007/s00421-010-1436-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Périard JD, Caillaud C, Thompson MW. The role of aerobic fitness and exercise intensity on endurance performance in uncompensable heat stress conditions. Eur J Appl Physiol. 2012;112(6):19891999. PubMed ID: 21947407 doi:10.1007/s00421-011-2165-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Cheung SS, McLellan TM. Heat acclimation, aerobic fitness, and hydration effects on tolerance during uncompensable heat stress. J Appl Physiol. 1998;84(5):17311739. PubMed ID: 9572824 doi:10.1152/jappl.1998.84.5.1731

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Mora-Rodriguez R. Influence of aerobic fitness on thermoregulation during exercise in the heat. Exerc Sport Sci Rev. 2012;40(2):7987. PubMed ID: 22710703 doi:10.1097/JES.0b013e3182625a83

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Gonzalez-Alonso J, Calbet JA. Reductions in systemic and skeletal muscle blood flow and oxygen delivery limit maximal aerobic capacity in humans. Circulation. 2003;107(6):824830. PubMed ID: 12591751 doi:10.1161/01.cir.0000049746.29175.3f

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Gaitanos GC, Nevill ME, Brooks S, Williams C. Repeated bouts of sprint running after induced alkalosis. J Sports Sci. 1991;9(4):355370. PubMed ID: 1664869 doi:10.1080/02640419108729896

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Periard JD, Cramer MN, Chapman PG, Caillaud C, Thompson MW. Cardiovascular strain impairs prolonged self-paced exercise in the heat. Exp Physiol. 2011;96(2):134144. PubMed ID: 20851861 doi:10.1113/expphysiol.2010.054213

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Nybo L, Nielsen B. Hyperthermia and central fatigue during prolonged exercise in humans. J Appl Physiol. 2001;91(3):10551060. PubMed ID: 11509498 doi:10.1152/jappl.2001.91.3.1055

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2794 1228 10
Full Text Views 61 27 0
PDF Downloads 70 27 0