Caffeine Use or Napping to Enhance Repeated Sprint Performance After Partial Sleep Deprivation: Why Not Both?

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Mohamed Romdhani
Search for other papers by Mohamed Romdhani in
Current site
Google Scholar
PubMed
Close
,
Nizar Souissi
Search for other papers by Nizar Souissi in
Current site
Google Scholar
PubMed
Close
,
Imen Moussa-Chamari
Search for other papers by Imen Moussa-Chamari in
Current site
Google Scholar
PubMed
Close
,
Yassine Chaabouni
Search for other papers by Yassine Chaabouni in
Current site
Google Scholar
PubMed
Close
,
Kacem Mahdouani
Search for other papers by Kacem Mahdouani in
Current site
Google Scholar
PubMed
Close
,
Zouheir Sahnoun
Search for other papers by Zouheir Sahnoun in
Current site
Google Scholar
PubMed
Close
,
Tarak Driss
Search for other papers by Tarak Driss in
Current site
Google Scholar
PubMed
Close
,
Karim Chamari
Search for other papers by Karim Chamari in
Current site
Google Scholar
PubMed
Close
, and
Omar Hammouda
Search for other papers by Omar Hammouda in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: To compare the effect of a 20-minute nap opportunity (N20), a moderate dose of caffeine (CAF; 5 mg·kg−1), or a moderate dose of caffeine before N20 (CAF+N) as possible countermeasures to the decreased performance and the partial sleep deprivation–induced muscle damage. Methods: Nine male, highly trained judokas were randomly assigned to either baseline normal sleep night, placebo, N20, CAF, or CAF+N. Test sessions included the running-based anaerobic sprint test, from which the maximum (Pmax), mean (Pmean), and minimum (Pmin) powers were calculated. Biomarkers of muscle, hepatic, and cardiac damage and of enzymatic and nonenzymatic antioxidants were measured at rest and after the exercise. Results: N20 increased Pmax compared with placebo (P < .01, d = 0.75). CAF+N increased Pmax (P < .001, d = 1.5; d = 0.94), Pmin (P < .001, d = 2.79; d = 2.6), and Pmean (P < .001, d = 1.93; d = 1.79) compared with placebo and CAF, respectively. Postexercise creatine kinase increased whenever caffeine was added, that is, after CAF (P < .001, d = 1.19) and CAF+N (P < .001, d = 1.36). Postexercise uric acid increased whenever participants napped, that is, after N20 (P < .001, d = 2.19) and CAF+N (P < .001, d = 2.50) and decreased after CAF (P < .001, d = 2.96). Conclusion: Napping improved repeated-sprint performance and antioxidant defense after partial sleep deprivation. Contrarily, caffeine increased muscle damage without improving performance. For sleep-deprived athletes, caffeine before a short nap opportunity would be more beneficial for repeated sprint performance than each treatment alone.

Chamari and Hammouda participated equally in the study. Romdhani and Souissi are with the High Inst of Sport and Physical Education, Ksar-Said, Manouba University, Manouba, Tunisia; and Physical activity, Sport and health, UR18JS01, National Observatory of Sports, Tunis, Tunisia. Moussa-Chamari is with the Physical Education Dept, College of Education, Qatar University, Doha, Qatar. Chaabouni and Mahdouani are with the Dept of Biochemistry, CHU Ibn Jazzar, Kairouan, Tunisia; and the Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products (LATVEP), Faculty of Pharmacy, University of Monastir, Monastir, Tunisia. Sahnoun is with the Laboratory of Pharmacology, Faculty of Medicine, University of Sfax, Sfax, Tunisia. Driss is with the Research Center on Sport and Movement (Centre de Recherches sur le Sport et le Mouvement, CeRSM), UPL, UFR STAPS, Université Paris Nanterre, Nanterre, France. Chamari is with Aspetar, Qatar Orthopaedic and Sports Medicine Hospital, Doha, and ''OPS Research Lab'', CNMSS, Tunis, Tunisia. Hammouda is with the High Inst of Sport and Physical Education, University of Sfax, Sfax, Tunisia.

Romdhani (romdhaniroma@gmail.com) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Mejri MA, Hammouda O, Zouaoui K, et al. Effect of two types of partial sleep deprivation on Taekwondo players’ performance during intermittent exercise. Biol Rhythm Res. 2014;45(1):1726. doi:10.1080/09291016.2013.787686

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Romdhani M, Hammouda O, Smari K, et al. Total sleep deprivation and recovery sleep affect the diurnal variation of agility performance: the gender differences [published online ahead of print May 30, 2018]. J Strength Cond Res. doi:10.1519/jsc.0000000000002614

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Mougin F, Bourdin H, Simon-Rigaud ML, Nguyen NU, Kantelip JP, Davenne D. Hormonal responses to exercise after partial sleep deprivation and after a hypnotic drug-induced sleep. J Sports Sci. 2001;19(2):8997. doi:10.1080/026404101300036253

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Daaloul H, Souissi N, Davenne D. Effects of napping on alertness, cognitive, and physical outcomes of karate athletes. Med Sci Sports Exerc. 2019;51(2):338345. PubMed ID: 30239491 doi:10.1249/MSS.0000000000001786

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Souissi N, Chtourou H, Aloui A, et al. Effects of time-of-day and partial sleep deprivation on short-term maximal performances of judo competitors. J Strength Cond Res. 2013;27(9):24732480. PubMed ID: 23974210 doi:10.1519/JSC.0b013e31827f4792

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Romdhani M, Hammouda O, Chaabouni Y, et al. Sleep deprivation affects post-lunch dip performances, biomarkers of muscle damage and antioxidant status. Biol Sport. 2019;36(1):5565. doi:10.5114/biolsport.2018.78907

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Borbely AA. Two process model of sleep regulation. Hum Neurobiol. 1982;1(3):195204. PubMed ID: 7185792

  • 8.

    Waterhouse J, Atkinson G, Edwards B, Reilly T. The role of a short post-lunch nap in improving cognitive, motor, and sprint performance in participants with partial sleep deprivation. J Sports Sci. 2007;25(14):15571566. PubMed ID: 17852691 doi:10.1080/02640410701244983

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Monk TH. The post-lunch dip in performance. Clin Sports Med. 2005;24(2):e15e23. doi:10.1016/j.csm.2004.12.002

  • 10.

    Rae DE, Chin T, Dikgomo K, et al. One night of partial sleep deprivation impairs recovery from a single exercise training session. Eur J Appl Physiol. 2017;117(4):699712. PubMed ID: 28247026 doi:10.1007/s00421-017-3565-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Juliff LE, Halson SL, Peiffer JJ. Understanding sleep disturbance in athletes prior to important competitions. J Sci Med Sport. 2015;18(1):1318. PubMed ID: 24629327 doi:10.1016/j.jsams.2014.02.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Achermann P, Dijk DJ, Brunner DP, Borbély AA. A model of human sleep homeostasis based on EEG slow-wave activity: quantitative comparison of data and simulations. Brain Res Bull. 1993;31(1–2):97113. PubMed ID: 8453498 doi:10.1016/0361-9230(93)90016-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Hayashi M, Masuda A, Hori T. The alerting effects of caffeine, bright light and face washing after a short daytime nap. Clin Neurophysiol. 2003;114(12):22682278. PubMed ID: 14652086 doi:10.1016/S1388-2457(03)00255-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Reyner LA, Horne JA. Suppression of sleepiness in drivers; combination of caffeine with a short nap. Psychophysiology. 1997;34(6):721725. PubMed ID: 9401427 doi:10.1111/j.1469-8986.1997.tb02148.x.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Horne JA, Reyner LA. Counteracting driver sleepiness: effects of napping, caffeine, and placebo. Psychophysiology. 1996;33(3):306309. PubMed ID: 8936399 doi:10.1111/j.1469-8986.1996.tb00428.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Romdhani M, Souissi N, Chaabouni Y, et al. Improved physical performance and decreased muscular and oxidative damage with postlunch napping after partial sleep deprivation in athletes [published online ahead of print February 4, 2020]. Int J Sports Physiol Perform. 15(6):874889. doi:10.1123/ijspp.2019-0308

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Milner CE, Cote KA. Benefits of napping in healthy adults: impact of nap length, time of day, age, and experience with napping. J Sleep Res. 2009;18(2):272281. PubMed ID: 19645971 doi:10.1111/j.1365-2869.2008.00718.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Faraut B, Nakib S, Drogou C, et al. Napping reverses the salivary interleukin-6 and urinary norepinephrine changes induced by sleep restriction. J Clin Endocrinol Metab. 2015;100(3):E416E426. PubMed ID: 25668196 doi:10.1210/jc.2014-2566

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Hilditch CJ, Dorrian J, Banks S. A review of short naps and sleep inertia: do naps of 30 min or less really avoid sleep inertia and slow wave sleep? Sleep Med. 2017;32:176190. PubMed ID: 28366332 doi:10.1016/j.sleep.2016.12.016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Blanchfield AW, Lewis-Jones TM, Wignall JR, Roberts JB, Oliver SJ. The influence of an afternoon nap on the endurance performance of trained runners. Eur J Sport Sci. 2018;18(9):11771184. PubMed ID: 29851569 doi:10.1080/17461391.2018.1477180

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Hammouda O, Romdhani M, Chaabouni Y, Mahdouani K, Driss T, Souissi N. Diurnal napping after partial sleep deprivation affected hematological and biochemical responses during repeated sprint. Biol Rhythm Res. 2018;49(6):927939. doi:10.1080/09291016.2018.1429553

    • Search Google Scholar
    • Export Citation
  • 22.

    Boukhris O, Abdessalem R, Ammar A, et al. Nap opportunity during the daytime affects performance and perceived exertion in 5-m shuttle run test. Front Physiol. 2019;10:18. doi:10.3389/fphys.2019.00779

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Suppiah HT, Yong LC, Choong G, Chia M. Effects of a short daytime nap on shooting and sprint performance in high-level adolescent athletes. Int J Sports Physiol Perform. 14(1):7682. doi:10.1123/ijspp.2018-0107

    • Search Google Scholar
    • Export Citation
  • 24.

    Vgontzas AN, Pejovic S, Zoumakis E, et al. Daytime napping after a night of sleep loss decreases sleepiness, improves performance, and causes beneficial changes in cortisol and interleukin-6 secretion. Am J Physiol Endocrinol Metab. 2006;292(1):E253E261. PubMed ID: 16940468 doi:10.1152/ajpendo.00651.2005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    McLellan TM, Caldwell JA, Lieberman HR. A review of caffeine’s effects on cognitive, physical and occupational performance. Neurosci Biobehav Rev. 2016;71:294312. doi:10.1016/j.neubiorev.2016.09.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Lee CL, Cheng CF, Lin JC, Huang HW. Caffeine’s effect on intermittent sprint cycling performance with different rest intervals. Eur J Appl Physiol. 2012;112(6):21072116. PubMed ID: 21960086 doi:10.1007/s00421-011-2181-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Paton CD, Hopkins WG, Vollebregt L. Little effect of caffeine ingestion on repeated sprints in team-sport athletes. Med Sci Sports Exerc. 2001;33(5):822825. PubMed ID: 11323555 doi:10.1097/00005768-200105000-00023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Crowe MJ, Leicht AS, Spinks WL. Physiological and cognitive responses to caffeine during repeated, high-intensity exercise. Int J Sport Nutr Exercise Metab. 2006;16(5):528544. PubMed ID: 17240784 doi:10.1123/ijsnem.16.5.528

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Alavi Y, Mirdar S, Rngrazan MD. Effect of different caffeine doses on exercise-induced oxidative stress in active men. Int J Sci Basic Appl Res. 2015;4(11):667672.

    • Search Google Scholar
    • Export Citation
  • 30.

    Olcina GJ, Muñoz D, Timón R, et al. Effect of caffeine on oxidative stress during maximum incremental exercise. J Sports Sci Med. 2006;5(4):621628. PubMed ID: 24357958

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Tauler P, Martínez S, Moreno C, Monjo M, Martínez P, Aguiló A. Effects of caffeine on the inflammatory response induced by a 15-km run competition. Med Sci Sports Exerc. 2013;45(7):12691276. PubMed ID: 23299767 doi:10.1249/MSS.0b013e3182857c8a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Marco Machado, Paulo Vinícios C, Zovico D, et al. Caffeine does not increase resistance exercise-induced microdamage. J Exerc Sci Fit. 2008;6(2):115120.

    • Search Google Scholar
    • Export Citation
  • 33.

    Fredholm BB, Bättig K, Holmén J, Nehlig A, Zvartau EE. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev. 1999;51(1):83133. PubMed ID: 10049999

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Horne JA, Ostberg O. A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int J Chronobiol. 1976;4(2):97110. PubMed ID: 1027738

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Buysse DJ, Reynolds CF, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989;28(2):193213. PubMed ID: 2748771 doi:10.1016/0165-1781(89)90047-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Draper PN, Whyte G. Anaerobic performance testing. Peak Perform. 1997;96:35.

  • 37.

    Zagatto AM, Beck WR, Gobatto CA. Validity of the running anaerobic sprint test for assessing anaerobic power and predicting short-distance performances. J Strength Cond Res. 2009;23(6):18201827. PubMed ID: 19675478 doi:10.1519/JSC.0b013e3181b3df32

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Franchini E, Del Vecchio FB, Matsushigue KA, Artioli GG. Physiological profiles of elite judo athletes. Sports Med. 2011;41(2):147166. PubMed ID: 21244106 doi:10.2165/11538580-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Foster C. Monitoring training in athletes with reference to overtraining syndrome. Med Sci Sports Exerc. 1998;30(7):11641168. PubMed ID: 9662690 doi:10.1097/00005768-199807000-00023.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Cohen J. A power primer. Psychological Bulletin. 1992;112(1):155159. PubMed ID: 19565683 doi:10.1037/0033-2909.112.1.155

  • 41.

    Wyatt JK, Cajochen C, Ritz-De Cecco A, Czeisler CA, Dijk DJ. Low-dose repeated caffeine administration for circadian-phase-dependent performance degradation during extended wakefulness. Sleep. 2004;27(3):374381. PubMed ID: 15164887 doi:10.1093/sleep/27.3.374.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Carrier J, Paquet J, Fernandez-Bolanos M, et al. Effects of caffeine on daytime recovery sleep: a double challenge to the sleep-wake cycle in aging. Sleep Med. 2009;10(9):10161024. PubMed ID: 19342294 doi:10.1016/j.sleep.2009.01.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Urry, E, & Landolt, HP. Adenosine, caffeine, and performance: from cognitive neuroscience of sleep to sleep pharmacogenetics. In: Sleep, Neuronal Plasticity and Brain Function. Berlin, Heidelberg: Springer; 2014:331366. doi:10.1007/7854_2014_274

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Bassini-Cameron A, Sweet E, Bottino A, Bittar C, Veiga C, Cameron LC. Effect of caffeine supplementation on haematological and biochemical variables in elite soccer players under physical stress conditions. Br J Sports Med. 2007;41(8):523530. doi:10.1136/bjsm.2007.035147

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Wayner DDM, Burton GW, Ingold KU, Barclay LRC, Locke SJ. The relative contributions of vitamin E, urate, ascorbate and proteins to the total peroxyl radical-trapping antioxidant activity of human blood plasma. Biochim Biophys Acta. 1987;924(3):408419. doi:10.1016/0304-4165(87)90155-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 4524 1499 91
Full Text Views 86 37 2
PDF Downloads 100 37 1