Utility of an Isometric Midthigh Pull Test to Assess Lower Body Muscular Strength in Professional Netball Players

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: This study established the relationship between isometric midthigh pull (IMTP) peak force and court-based jumping, sprinting, and change of direction (COD) performance in professional netball players. The change in IMTP peak force in response to sport-specific training was also examined. Methods: IMTP peak force and court-based jumping, sprinting, and COD were collected in 18 female athletes contracted to a Suncorp Super Netball team. Linear regression models established the relationship between absolute and normalized strength values and court-based performance measures in the participant cohort. Changes in IMTP peak force and court-based performance measures were examined following 2 consecutive preseason training blocks in a subset of participants. Results: The IMTP peak force values normalized to body mass were found to be determinants of court-based jumping, sprinting, and COD performance in the participant cohort (R2 = .34–.65, P ≤ .016). The participants showed increases in absolute (mean ± SE = 398 ± 68.5 N, P < .001, Hedge g = 0.70 [−0.05 to 1.35]) and normalized IMTP peak force (mean ± SE = 4.6 ± 0.78 N·kg−1, P < .001, Hedge g = 0.47 [−0.04 to 0.97]) over 2 consecutive training blocks that coincided with improvements in jumping, sprinting, and COD performances. Conclusion: IMTP peak force is a determinant of court-based jumping, sprinting, and COD performance and is sensitive to training in professional netball players. These results support the utility of the IMTP test to monitor the development and maintenance of maximal lower body muscular strength in these athletes.

Hogarth, McKean, and McKenzie are with the School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore, QLD, Australia. McKean and McKenzie are also with the High Performance Sport, University of the Sunshine Coast, Maroochydore DC, QLD, Australia; and the Coaching and Athlete Support, Sunshine Coast Lightning, Maroochydore, QLD, Australia. Collings is with the School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia.

Hogarth (lhogarth@usc.edu.au) is corresponding author.
  • 1.

    Fox A, Spittle M, Otago L, Saunders N. Activity profiles of the Australian female netball team players during international competition: implications for training practice. J Sports Sci. 2013;31(14):15881595. PubMed ID: 23672529 doi:10.1080/02640414.2013.792943

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Young CM, Gastin PB, Sanders N, Mackey L, Dwyer DB. Player load in elite netball: match, training, and positional comparisons. Int J Sports Physiol Perform. 2016;11(8):10741079. PubMed ID: 27001768 doi:10.1123/ijspp.2015-0156

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Thomas C, Ismail KT, Simpson R, Comfort P, Jones PA, Dos’Santos T. Physical profiles of female academy netball players by position. J Strength Cond Res. 2019;33(6):16011608. PubMed ID: 28426516 doi:10.1519/JSC.0000000000001949

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    McKenzie CR, Whatman C, Brughelli M. Performance profiling of female youth netball players [published online ahead of print February 6, 2019]. J Strength Cond Res. PubMed ID: 30741855 doi:10.1519/JSC.0000000000002958

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Graham S, Duthie G, Aughey R, Zois J. Comparison of physical profiles of state-level netball players by position [published online ahead of print January 10, 2019]. J Strength Cond Res. PubMed ID: 30640302 doi:10.1519/JSC.0000000000002934

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Simpson MJ, Jenkins DG, Leveritt MD, Kelly VG. Physical profiles of elite, sub-elite, regional and age-group netballers. J Sports Sci. 2019;37(11):12121219. PubMed ID: 30558478 doi:10.1080/02640414.2018.1553269

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Davidson A, Trewartha G. Understanding the physiological demands of netball: a time-motion investigation. Int J Perform Anal Sport. 2008;8(3):117. doi:10.1080/24748668.2008.11868443

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Bailey JA, Gastin PB, Mackey L, Dwyer DB. The player load associated with typical activities in elite netball. Int J Sports Physiol Perform. 2017;12(9):12181223. PubMed ID: 28182504 doi:10.1123/ijspp.2016-0378

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Suchomel TJ, Nimphius S, Stone MH. The importance of muscular strength in athletic performance. Sports Med. 2016;46(10):14191449. PubMed ID: 26838985 doi:10.1007/s40279-016-0486-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Suchomel TJ, Nimphius S, Bellon CR, Stone MH. The importance of muscular strength: training considerations. Sports Med. 2018;48(4):765785. PubMed ID: 29372481 doi:10.1007/s40279-018-0862-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Siff MC. Biomechanical foundations of strength and power training. In: Zatsiorsky VM, ed. Biomechanics in Sport. Blackwell Science Ltd; 2008. doi:10.1002/9780470693797.ch6

    • Search Google Scholar
    • Export Citation
  • 12.

    Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P. Increased rate of force development and neural drive of human skeletal muscle following resistance training. J Appl Physiol. 2002;93(4):13181326. doi:10.1152/japplphysiol.00283.2002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Cormie P, McGuigan MR, Newton RU. Developing maximal neuromuscular power: part 1–biological basis of maximal power production. Sports Med. 2011;41(1):1738. PubMed ID: 21142282 doi:10.2165/11537690-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Cormie P, McGuigan MR, Newton RU. Developing maximal neuromuscular power: part 2—training considerations for improving maximal power production. Sports Med. 2011;41(2):125146. PubMed ID: 21244105 doi:10.2165/11538500-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Spiteri T, Nimphius S, Hart NH, Specos C, Sheppard JM, Newton RU. Contribution of strength characteristics to change of direction and agility performance in female basketball athletes. J Strength Cond Res. 2014;28(9):24152423. PubMed ID: 24875426 doi:10.1519/JSC.0000000000000547

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Nimphius S, McGuigan MR, Newton RU. Relationship between strength, power, speed, and change of direction performance of female softball players. J Strength Cond Res. 2010;24(4):885895. PubMed ID: 20300038 doi:10.1519/JSC.0b013e3181d4d41d

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Thomas C, Comfort P, Jones PA, Dos’Santos T. A comparison of isometric midthigh-pull strength, vertical jump, sprint speed, and change-of-direction speed in academy netball players. Int J Sports Physiol Perform. 2017;12(7):916921. PubMed ID: 27918677 doi:10.1123/ijspp.2016-0317

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    James LP, Roberts LA, Haff GG, Kelly VG, Beckman EM. Validity and reliability of a portable isometric mid-thigh clean pull. J Strength Cond Res. 2017;31(5):13781386. PubMed ID: 28415068 doi:10.1519/JSC.0000000000001201

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Dobbin N, Hunwicks R, Jones B, Till K, Highton J, Twist C. Criterion and construct validity of an isometric midthigh-pull dynamometer for assessing whole-body strength in professional rugby league players. Int J Sports Physiol Perform. 2018;13(2):235239. PubMed ID: 28605261 doi:10.1123/ijspp.2017-0166

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Currell K, Jeukendrup AE. Validity, reliability and sensitivity of measures of sporting performance. Sports Med. 2008;38(4):297316. PubMed ID: 18348590 doi:10.2165/00007256-200838040-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Guppy SN, Brady CJ, Kotani Y, Stone MH, Medic N, Haff GG. Effect of altering body posture and barbell position on the within-session reliability and magnitude of force-time curve characteristics in the isometric midthigh pull. J Strength Cond Res. 2019;33(12):32523262. PubMed ID: 31269001 doi:10.1519/JSC.0000000000003254

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Comfort P, Dos’Santos T, Beckham GK, Stone MH, Guppy SN , Haff GG. Standardization and methodological considerations for the isometric midthigh pull. Strength Cond J. 2019;41(2):5779. doi:10.1519/SSC.0000000000000433

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Beckham GK, Sato K, Santana HAP, Mizuguchi S, Haff GG, Stone MH. Effect of body position on force production during the isometric midthigh pull. J Strength Cond Res. 2018;32(1):4856. PubMed ID: 28486331 doi:10.1519/JSC.0000000000001968

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Leard JS, Cirillo MA, Katsnelson E, et al. Validity of two alternative systems for measuring vertical jump height. J Strength Cond Res. 2007;21(4):12961299. PubMed ID: 18076265

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Nuzzo JL, Anning JH, Scharfenberg JM. The reliability of three devices used for measuring vertical jump height. J Strength Cond Res. 2011;25(9):25802590. PubMed ID: 21804426 doi:10.1519/JSC.0b013e3181fee650

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Agar-Newman DJ, Klimstra MD. Efficacy of horizontal jumping tasks as a method for talent identification of female rugby players. J Strength Cond Res. 2015;29(3):737743. PubMed ID: 25226331 doi:10.1519/JSC.0000000000000683

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Meylan C, McMaster T, Cronin J, Mohammad NI, Rogers C, DeKlerk M. Single-Leg Lateral, horizontal, and vertical jump assessment: reliability, interrelationships, and ability to predict sprint and change-of-direction performance. J Strength Cond Res. 2009;23(4):11401147. PubMed ID: 19528866 doi:10.1519/JSC.0b013e318190f9c2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Emmonds S, Nicholson G, Begg C, Jones B, Bissas A. Importance of physical qualities for speed and change of direction ability in elite female soccer players. J Strength Cond Res. 2019;33(6):16691677. PubMed ID: 28723816 doi:10.1519/JSC.0000000000002114

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Barber OR, Thomas C, Jones PA, McMahon JJ, Comfort P. Reliability of the 505 change-of-direction test in netball players. Int J Sports Physiol Perform. 2016;11(3):377380. PubMed ID: 26309330 doi:10.1123/ijspp.2015-0215

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Kraska JM, Ramsey MW, Haff GG, et al. Relationship between strength characteristics and unweighted and weighted vertical jump height. Int J Sport Physiol. 2009;4(4):461473.

    • Search Google Scholar
    • Export Citation
  • 31.

    McMaster DT, Gill N, Cronin J, McGuigan M. A brief review of strength and ballistic assessment methodologies in sport. Sports Med. 2014;44(5):603623. PubMed ID: 24497158 doi:10.1007/s40279-014-0145-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Nagahara R, Matsubayashi T, Matsuo A, Zushi K. Kinematics of transition during human accelerated sprinting. Biol Open. 2014;3(8):689699. PubMed ID: 24996923 doi:10.1242/bio.20148284

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Nagano A, Komura T, Fukashiro S. Optimal coordination of maximal-effort horizontal and vertical jump motions—a computer simulation study. Biomed Eng Online. 2007;6(1):20. PubMed ID: 17543118 doi:10.1186/1475-925X-6-20

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Nagahara R, Mizutani M, Matsuo A, Kanehisa H, Fukunaga T. Association of sprint performance with ground reaction forces during acceleration and maximal speed phases in a single sprint. J Appl Biomech. 2018;34(2):104110. PubMed ID: 28952906 doi:10.1123/jab.2016-0356

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Comfort P, Haigh A, Matthews MJ. Are changes in maximal squat strength during preseason training reflected in changes in sprint performance in rugby league players? J Strength Cond Res. 2012;26(3):772776. PubMed ID: 22310512 doi:10.1519/JSC.0b013e31822a5cbf

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Styles WJ, Matthews MJ, Comfort P. Effects of strength training on squat and sprint performance in soccer players. J Strength Cond Res. 2016;30(6):15341539. PubMed ID: 26473518 doi:10.1519/JSC.0000000000001243

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 155 155 132
Full Text Views 13 13 6
PDF Downloads 9 9 6