Age- and Sex-Related Differences in Recovery From High-Intensity and Endurance Exercise: A Brief Review

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Laura Hottenrott
Search for other papers by Laura Hottenrott in
Current site
Google Scholar
PubMed
Close
,
Sascha Ketelhut
Search for other papers by Sascha Ketelhut in
Current site
Google Scholar
PubMed
Close
,
Christoph Schneider
Search for other papers by Christoph Schneider in
Current site
Google Scholar
PubMed
Close
,
Thimo Wiewelhove
Search for other papers by Thimo Wiewelhove in
Current site
Google Scholar
PubMed
Close
, and
Alexander Ferrauti
Search for other papers by Alexander Ferrauti in
Current site
Google Scholar
PubMed
Close
Restricted access

Postexercise recovery is a fundamental component for continuous performance enhancement. Due to physiological and morphological changes in aging and alterations in performance capacity, athletes of different ages may recover at different rates from physical exercise. Differences in body composition, physiological function, and exercise performance between men and women may also have a direct influence on restoration processes. Purpose: This brief review examines current research to indicate possible differences in recovery processes between male and female athletes of different age groups. The paper focuses on postexercise recovery following sprint and endurance tests and tries to identify determinants that modulate possible differences in recovery between male and female subjects of different age groups. Results: The literature analysis indicates age- and sex-dependent differences in short- and long-term recovery. Short-term recovery differs among children, adults, and masters. Children have shorter lactate half-life and a faster cardiac and respiratory recovery compared to adults. Additionally, children and masters require shorter recovery periods during interval bouts than trained adults. Trained women show a slower cardiac and respiratory recovery compared to trained men. Long-term recovery is strongly determined by the extent of muscle damage. Trained adults tend to have more extensive muscle damage compared to masters and children. Conclusion: The influence of age and sex on the recovery process varies among the different functional systems and depends on the time of the recovery processes. Irrespective of age and sex, the performance capacity of the individual determines the recovery process after high-intensity and endurance exercise.

Hottenrott, Schneider, Wiewelhove, and Ferrauti are with the Faculty of Sport Science, Ruhr-University Bochum, Bochum, Germany. Ketelhut is with the Inst of Sport Science, Martin Luther University of Halle-Wittenberg, Halle, Germany.

Hottenrott (laura.hottenrott@rub.de) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Hausswirth C, Mujika I. Recovery for Performance in Sport. Champaign, IL: Human Kinetics; 2013.

  • 2.

    Kellmann M, Bertollo M, Bosquet L, et al. Recovery and performance in sport: consensus statement. Int J Sport Physiol Perform. 2018;13(2):240245. doi:10.1123/ijspp.2017-0759

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Mujika I. Quantification of training and competition loads in endurance sports: methods and applications. Int J Sport Physiol Perform. 2017;12(2):29.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Borges N, Reaburn P, Driller M, Argus C. Age-related changes in performance and recovery kinetics in masters athletes: a narrative review. J Aging Phys Act. 2016;24(1):149157. PubMed ID: 25880787 doi:10.1123/japa.2015-0021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Fell J, Williams AD. The effect of aging on skeletal-muscle recovery from exercise: possible implications for aging athletes. J Aging Phys Act. 2008;16(1):97115. PubMed ID: 18268815 doi:10.1123/japa.16.1.97

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Billaut F, Bishop D. Muscle fatigue in males and females during multiple-sprint exercise. Sports Med. 2009;39(4):257278. PubMed ID: 19317516 doi:10.2165/00007256-200939040-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Birat A, Bourdier P, Piponnier E, et al. Metabolic and fatigue profiles are comparable between prepubertal children and well-trained adult endurance athletes. Front Physiol. 2018;9:387. PubMed ID: 29740332 doi:10.3389/fphys.2018.00387

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Buchheit M, Duche P, Laursen PB, Ratel S. Postexercise heart rate recovery in children: relationship with power output, blood pH, and lactate. Appl Physiol Nutr Metab. 2010;35(2):142150. PubMed ID: 20383224 doi:10.1139/H09-140

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Chamari K, Ahmaidi S, Ayoub J, et al. Effects of aging on cardiorespiratory responses to brief and intense intermittent exercise in endurance-trained athletes. J Gerontol A Biol Sci Med Sci. 2000;55(11):B537B544. doi:10.1093/gerona/55.11.B537

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Darr KC, Bassett DR, Morgan BJ, Thomas DP. Effects of age and training status on heart rate recovery after peak exercise. Am J Physiol Heart Circ Physiol. 1988;254(2):H340H343. doi:10.1152/ajpheart.1988.254.2.H340

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Easthope CS, Hausswirth C, Louis J, Lepers R, Vercruyssen F, Brisswalter, J. Effects of a trail running competition on muscular performance and efficiency in well-trained young and master athletes. Eur J Appl Physiol. 2010;110(6):11071116. PubMed ID: 20703499 doi:10.1007/s00421-010-1597-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Fell J, Reaburn P, Harrison GJ. Altered perception and report of fatigue and recovery in veteran athletes. J Sports Med Phys Fitness. 2008;48(2):272. PubMed ID: 18427425

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Fell J, Haseler L, Gaffney P, Reaburn P, Harrison G. Performance during consecutive days of laboratory time-trials in young and veteran cyclists. J Sports Med Phys Fitness. 2006;46(3):395402. PubMed ID: 16998443

    • Search Google Scholar
    • Export Citation
  • 14.

    Hebestreit H, Mimura KL, Bar-Or O. Recovery of muscle power after high-intensity short-term exercise: comparing boys and men. J Appl Physiol. 1993;74(6):28752880. PubMed ID: 8365990 doi:10.1152/jappl.1993.74.6.2875

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Ohuchi H, Suzuki H, Yasuda K, Arakaki Y, Echigo S, Kamiya T. Heart rate recovery after exercise and cardiac autonomic nervous activity in children. Pediatr Res. 2000;47(3):329. PubMed ID: 10709731 doi:10.1203/00006450-200003000-00008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Silverman HG, Mazzeo RS. Hormonal responses to maximal and submaximal exercise in trained and untrained men of various ages. J. Gerontol A Biol Sci Med Sci. 1996;51(1):B30B37. doi:10.1093/gerona/51A.1.B30

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Sultana F, Abbiss CR, Louis J, Bernard T, Hausswirth C, Brisswalter J. Age-related changes in cardio-respiratory responses and muscular performance following an Olympic triathlon in well-trained triathletes. Eur J Appl Physiol. 2012;112(4):15491556. PubMed ID: 21853306 doi:10.1007/s00421-011-2115-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Zanconato S, Cooper DM, Armon Y. Oxygen cost and oxygen uptake dynamics and recovery with 1 min of exercise in children and adults. J Appl Physiol. 1991;71(3):993998. PubMed ID: 1757338 doi:10.1152/jappl.1991.71.3.993

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Antelmi I, Chuang EY, Grupi CJ, Latorre RM, Mansur AJ. Heart rate recovery after treadmill electrocardiographic exercise stress test and 24-hour heart rate variability in healthy individuals. Arq Bras Cardiol. 2008;90(6):380385. PubMed ID: 18592090 doi:10.1590/S0066-782X2008000600005

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Arena R, Arrowood JA, Fei D, Shelar S, Helm S, Kraft KA. The influence of sex on the relationship between heart rate recovery and other cardiovascular risk factors in apparently healthy subjects. Scand J Med Sci Sports. 2010;20(2):291297. PubMed ID: 19522754 doi:10.1111/j.1600-0838.2009.00883.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Blasco Lafarga MC, Martínez Navarro I, Mateo March M, Roldán Aliaga A, Cordellat Marzal A, Monteagudo Chiner P. Gender differences in elite athletes heart rate dynamics following a supra maximal complex effort. MOJ Sports Med. 2017;1(5):18.

    • Search Google Scholar
    • Export Citation
  • 22.

    Esbjörnsson-Liljedahl M, Sundberg CJ, Norman B, Jansson E. Metabolic response in type I and type II muscle fibers during a 30-s cycle sprint in men and women. J Appl Physiol. 1999;87(4):13261332. PubMed ID: 10517759

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Esbjörnsson-Liljedahl M, Bodin K, Jansson E. Smaller muscle ATP reduction in women than in men by repeated bouts of sprint exercise. J Appl Physiol. 2002;93(3):10751083. PubMed ID: 12183505

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Gratas-Delamarche A, Le Cam R, Delamarche P, Monnier M, Koubi H. Lactate and catecholamine responses in male and female sprinters during a Wingate test. Eur J Appl Physiol Occup Physiol. 1994;68(4):362366. PubMed ID: 8055897 doi:10.1007/BF00571458

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Kappus RM, Ranadive SM, Yan H, et al. Sex differences in autonomic function following maximal exercise. Biol Sex Differ. 2015;6(1):28. doi:10.1186/s13293-015-0046-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Laurent CM, Green JM, Bishop PA, et al. Effect of gender on fatigue and recovery following maximal intensity repeated sprint performance. J Sports Med Phys Fitness. 2010;50(3):24353. PubMed ID: 20842083

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Mageean AL, Alexander RP, Mier CM. Repeated sprint performance in male and female college athletes matched for VO2max relative to fat free mass. Int J Exerc Sci. 2011;4(4):229. PubMed ID: 27182366

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Mendonca GV, Heffernan KS, Rossow L, Guerra M, Pereira FD, Fernhall B. Sex differences in linear and nonlinear heart rate variability during early recovery from supramaximal exercise. Appl Physiol Nutr Metab. 2010;35(S1):439446. doi:10.1139/H10-028

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Mendonca GV, Teodósio C, Bruno PM. Sexual dimorphism in heart rate recovery from peak exercise. Eur J Appl Physiol. 2017;117(7):13731381. PubMed ID: 28470411 doi:10.1007/s00421-017-3627-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Skelly LE, Gillen JB, MacInnis MJ, et al. Effect of sex on the acute skeletal muscle response to sprint interval exercise. Exp Physiol, 2017;102(3):354365. PubMed ID: 28118678 doi:10.1113/EP086118

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Vincent S, Berthon P, Zouhal H, et al. Plasma glucose, insulin and catecholamine responses to a Wingate test in physically active women and men. Eur J Appl Physiol. 2004;91(1):1521. PubMed ID: 14551777 doi:10.1007/s00421-003-0957-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    McCormick R, Vasilaki A. Age-related changes in skeletal muscle: changes to life-style as a therapy. Biogerontology. 2018;19(6):519536. PubMed ID: 30259289 doi:10.1007/s10522-018-9775-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Faulkner JA, Davis CS, Mendias CL, Brooks SV. The aging of elite male athletes: age-related changes in performance and skeletal muscle structure and function. Clin J Sport Med. 2008;18(6):501. PubMed ID: 19001883 doi:10.1097/JSM.0b013e3181845f1c

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Hakkinen K, Pakarinen A, Kraemer WJ, Newton RU, Alen M. Basal concentrations and acute responses of serum hormones and strength development during heavy resistance training in middle-aged and elderly men and women. J Gerontol A Biol Sci Med Sci. 2000;55(2):B95B105. doi:10.1093/gerona/55.2.B95

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Hansen M. Female hormones: do they influence muscle and tendon protein metabolism? P Nutr Soc. 2018;77(1):3241. doi:10.1017/S0029665117001951

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Finkelstein JS, Lee H, Burnett-Bowie SAM, et al. Gonadal steroids and body composition, strength, and sexual function in men. N Engl J Med. 2013;369(11):10111022. PubMed ID: 24024838 doi:10.1056/NEJMoa1206168

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Bieuzen F, Hausswirth C, Louis J, Brisswalter J. Age-related changes in neuromuscular function and performance following a high-intensity intermittent task in endurance-trained men. Gerontology. 2010;56(1):6672. PubMed ID: 19940455 doi:10.1159/000262286

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Tanaka H, Monahan KD, Seals DR. Age-predicted maximal heart rate revisited. J Am Coll Cardiol. 2001;37(1):153156. PubMed ID: 11153730 doi:10.1016/S0735-1097(00)01054-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Juel C, Klarskov C, Nielsen JJ, Krustrup P, Mohr M, Bangsbo J. Effect of high-intensity intermittent training on lactate and H+ release from human skeletal muscle. Am J Physiol Endocrinol Metab. 2014;286(2):E245E251. doi:10.1152/ajpendo.00303.2003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Berthelot G, Bar-Hen A, Marck A, et al. An integrative modeling approach to the age-performance relationship in mammals at the cellular scale. Sci Rep. 2019;9(1):110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Korhonen MT, Suominen H, Mero A. Age and sex differences in blood lactate response to sprint running in elite master athletes. Can J Appl Physiol. 2005;30(6):647665. PubMed ID: 16485517 doi:10.1139/h05-146

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Hunter GR, Newcomer BR, Weinsier RL, et al. Age is independently related to muscle metabolic capacity in premenopausal women. J Appl Physiol. 2002;93(1):7076. PubMed ID: 12070188 doi:10.1152/japplphysiol.01239.2001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Hall JL, Mazzeo RS, Podolin DA, Cartee GD, Stanley WC. Exercise training does not compensate for age-related decrease in myocardial GLUT-4 content. J Appl Physiol. 1994;76(1):328332. PubMed ID: 8175525 doi:10.1152/jappl.1994.76.1.328

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Sandbakk Ø, Solli GS, Holmberg HC. Sex differences in world-record performance: the influence of sport discipline and competition duration. Int J Sport Physiol Perform. 2018;13(1):28. doi:10.1123/ijspp.2017-0196

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Högler W, Blimkie CJ, Cowell CT, et al. Sex-specific developmental changes in muscle size and bone geometry at the femoral shaft. Bone. 2008;42(5):982989. PubMed ID: 18337201 doi:10.1016/j.bone.2008.01.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    McArdle WD, Katch FI, Katch VL. Exercise physiology: Energy, Nutrition and Human Performance. Philadelphia, PA: Lippincott Williams & Wilkins; 2001:752793.

    • Search Google Scholar
    • Export Citation
  • 47.

    Cheuvront SN, Moffatt RJ, DeRuisseau K, Driskell J, Wolinsky I. Body composition and gender differences in performance. In: Wolinsky I, Driskell JA, eds. Nutritional Assessment of Athletes. Boca Raton, FL: CRC Press; 2002:177200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Schmidt W, Prommer N. Effects of various training modalities on blood volume. Scand J Med Sci Sports. 2008;18:5769. PubMed ID: 18665953 doi:10.1111/j.1600-0838.2008.00833.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Thirup P. Haematocrit. Sports Med. 2003;33(3):231243. PubMed ID: 12656642 doi:10.2165/00007256-200333030-00005

  • 50.

    Miller AEJ, MacDougall JD, Tarnopolsky MA, Sale DG. Gender differences in strength and muscle fiber characteristics. Eur J Appl Physiol Occup Physiol. 1993;66(3):254262. PubMed ID: 8477683 doi:10.1007/BF00235103

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Venables MC, Achten J, Jeukendrup AE. Determinants of fat oxidation during exercise in healthy men and women: a cross-sectional study. J Appl Physiol. 2005;98(1):160167. PubMed ID: 15333616 doi:10.1152/japplphysiol.00662.2003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    Hamadeh MJ, Devries MC, Tarnopolsky MA. Estrogen supplementation reduces whole body leucine and carbohydrate oxidation and increases lipid oxidation in men during endurance exercise. J Clin Endocrinol Metab. 2005;90(6):35923599. PubMed ID: 15755861 doi:10.1210/jc.2004-1743

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Steffensen CH, Roepstorff C, Madsen M, Kiens B. Myocellular triacylglycerol breakdown in females but not in males during exercise. Am J Physiol Endocrinol Metab. 2002;282(3):E634E642. doi:10.1152/ajpendo.00078.2001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Allen SV, Hopkins WG. Age of peak competitive performance of elite athletes: a systematic review. Sports Med. 2015;45(10):14311441. PubMed ID: 26088954 doi:10.1007/s40279-015-0354-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Kappenstein J, Fernández-Fernández J, Engel F, Ferrauti A. Effects of active and passive recovery on blood lactate and blood pH after a repeated sprint protocol in children and adults. Pediatr Exerc Sci. 2015;27(1):7784. PubMed ID: 25387324 doi:10.1123/pes.2013-0187

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Weber CL, Chia M, Inbar O. Gender differences in anaerobic power of the arms and legs—a scaling issue. Med Sci Sports Exerc. 2006;38(1):129137. PubMed ID: 16394965 doi:10.1249/01.mss.0000179902.31527.2c

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 57.

    Dar DE, Zinder O. Short-term effect of steroids on catecholamines secretion from bovine adrenal medulla chromaffin cells. Neuropharmacology. 1997;36(11/12):17831788 doi:10.1016/S0028-3908(97)00150-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Zhang J. Effect of age and sex on heart rate variability in healthy subjects. J Manipulative Physiol Ther. 2007;30(5):374379. PubMed ID: 17574955 doi:10.1016/j.jmpt.2007.04.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Rossy LA, Thayer JF. Fitness and gender-related differences in heart period variability. Psychosom Med. 1998;60(6):773781. PubMed ID: 9847039 doi:10.1097/00006842-199811000-00022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Daanen HA, Lamberts RP, Kallen VL, Jin A, Van Meeteren NL. A systematic review on heart-rate recovery to monitor changes in training status in athletes. Int J Sport Physiol Perform. 2012;7(3):251260. doi:10.1123/ijspp.7.3.251

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 61.

    Kannankeril PJ, Le FK, Kadish AH, Goldberger JJ. Parasympathetic effects on heart rate recovery after exercise. J Investig Med. 2004;52(6):394401. PubMed ID: 15612453 doi:10.1136/jim-52-06-34

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Imai K, Sato H, Hori M, et al. Vagally mediated heart rate recovery after exercise is accelerated in athletes but blunted in patients with chronic heart failure. J Am Coll Cardiol. 1994;24(6):15291535. PubMed ID: 7930286 doi:10.1016/0735-1097(94)90150-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Hecksteden A, Pitsch W, Julian R, et al. A new method to individualize monitoring of muscle recovery in athletes. Int J Sports Physiol Perform. 2017;12(9):11371142. PubMed ID: 27967274 doi:10.1123/ijspp.2016-0120

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 4264 2058 128
Full Text Views 127 53 7
PDF Downloads 141 60 6