Effects of Exercise Sequence and Velocity Loss Threshold During Resistance Training on Following Endurance and Strength Performance During Concurrent Training

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $114.00

1 year online subscription

USD  $152.00

Student 2 year online subscription

USD  $217.00

2 year online subscription

USD  $289.00

Purpose: This study aimed to analyze the response to 4 concurrent training interventions differing in the training sequence and in the velocity loss (VL) threshold during strength training (20% vs 40%) on following endurance and strength performance. Methods: A randomized crossover research design was used. Sixteen trained men performed 4 training interventions consisting of endurance training (ET) followed by resistance training (RT), with 20% and 40% VL, respectively (ET + RT20 and ET + RT40), and RT with 20% and 40% VL, respectively, followed by ET (RT20 + ET and RT40 + ET). The ET consisted of running for 10 minutes at 90% of maximal aerobic velocity. The RT consisted of 3 squat sets with 60% of 1-repetition maximum. A 5-minute rest was given between exercises. The oxygen uptake throughout the ET and repetition velocity during RT were recorded. The blood lactate concentration, vertical jump, and squat velocity were measured at preexercise and after the endurance and strength exercises. Results: The RT40 + ET protocol showed an impaired running time along with higher ventilatory equivalents compared with those protocols that performed the ET without previous fatigue. No significant differences were observed in the repetitions per set performed for a given VL threshold, regardless of the exercise sequence. The protocols consisting of 40%VL induced greater reductions in jump height and squat velocity, along with elevated blood lactate concentration. Conclusions: A high VL magnitude (40%VL) induced higher metabolic and mechanical stress, as well as greater residual fatigue, on the following ET performance.

Nájera-Ferrer, González-Badillo, and Pareja-Blanco are with the Physical Performance & Sports Research Center, Universidad Pablo de Olavide, Seville, Spain. Pérez-Caballero is with the Sports Medicine Centre, University of Murcia, Murcia, Spain. Pareja-Blanco is also with the Faculty of Sport Sciences, Dept of Sports and Computers Sciences, Universidad Pablo de Olavide, Seville, Spain.

Pareja-Blanco (fparbla@upo.es) is corresponding author.
  • 1.

    Hickson RC. Interference of strength development by simultaneously training for strength and endurance. Eur J Appl Physiol Occup Physiol. 1980;45(2–3):255263. PubMed ID: 7193134 doi:10.1007/BF00421333

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Ronnestad BR, Mujika I. Optimizing strength training for running and cycling endurance performance: a review. Scand J Med Sci Sports. 2014;24(4):603612. PubMed ID: 23914932

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Berryman N, Mujika I, Bosquet L. Concurrent training for sports performance: the 2 sides of the medal. Int J Sports Physiol Perform. 2019;14(3):279285. PubMed ID: 29809072 doi:10.1123/ijspp.2018-0103

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Docherty D, Sporer B. A proposed model for examining the interference phenomenon between concurrent aerobic and strength training. Sports Med. 2000;30(6):385394. PubMed ID: 11132121 doi:10.2165/00007256-200030060-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Gabler M, Prieske O, Hortobagyi T, Granacher U. The effects of concurrent strength and endurance training on physical fitness and athletic performance in youth: a systematic review and meta-analysis. Front Physiol. 2018;9:1057. PubMed ID: 30131714

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Doma K, Deakin GB, Schumann M, Bentley DJ. Training considerations for optimising endurance development: an alternate concurrent training perspective. Sports Med. 2019;49(5):669682. PubMed ID: 30847824 doi:10.1007/s40279-019-01072-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Eddens L, van Someren K, Howatson G. The role of intra-session exercise sequence in the interference effect: a systematic review with meta-analysis. Sports Med. 2018;48(1):177188. PubMed ID: 28917030 doi:10.1007/s40279-017-0784-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Reed JP, Schilling BK, Murlasits Z. Acute neuromuscular and metabolic responses to concurrent endurance and resistance exercise. J Strength Cond Res. 2013;27(3):793801. PubMed ID: 22643135 doi:10.1519/JSC.0b013e31825c2d3e

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Sporer BC, Wenger HA. Effects of aerobic exercise on strength performance following various periods of recovery. J Strength Cond Res. 2003;17(4):638644. PubMed ID: 14636098

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Doma K, Deakin GB, Bentley DJ. Implications of impaired endurance performance following single bouts of resistance training: an alternate concurrent training perspective. Sports Med. 2017;47(11):21872200. PubMed ID: 28702901 doi:10.1007/s40279-017-0758-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Doma K, Schumann M, Sinclair WH, Leicht AS, Deakin GB, Hakkinen K. The repeated bout effect of typical lower body strength training sessions on sub-maximal running performance and hormonal response. Eur J Appl Physiol. 2015;115(8):17891799. PubMed ID: 25828143 doi:10.1007/s00421-015-3159-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Burt D, Lamb K, Nicholas C, Twist C. Effects of repeated bouts of squatting exercise on sub-maximal endurance running performance. Eur J Appl Physiol. 2013;113(2):285293. PubMed ID: 22684335 doi:10.1007/s00421-012-2437-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Doncaster GG, Twist C. Exercise-induced muscle damage from bench press exercise impairs arm cranking endurance performance. Eur J Appl Physiol. 2012;112(12):41354142. PubMed ID: 22526252 doi:10.1007/s00421-012-2404-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Doma K, Deakin GB. The acute effects intensity and volume of strength training on running performance. Eur J Sport Sci. 2014;14(2):107115. PubMed ID: 24533516 doi:10.1080/17461391.2012.726653

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Burt D, Lamb K, Nicholas C, Twist C. Lower-volume muscle-damaging exercise protects against high-volume muscle-damaging exercise and the detrimental effects on endurance performance. Eur J Appl Physiol. 2015;115(7):15231532. PubMed ID: 25697150 doi:10.1007/s00421-015-3131-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Marcora SM, Bosio A. Effect of exercise-induced muscle damage on endurance running performance in humans. Scand J Med Sci Sports. 2007;17(6):662671. PubMed ID: 17346288 doi:10.1111/j.1600-0838.2006.00627.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Sanchez-Medina L, Gonzalez-Badillo JJ. Velocity loss as an indicator of neuromuscular fatigue during resistance training. Med Sci Sports Exerc. 2011;43(9):17251734. PubMed ID: 21311352

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Pareja-Blanco F, Rodriguez-Rosell D, Sanchez-Medina L, et al. . Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scand J Med Sci Sports. 2017;27(7):724735. doi:10.1111/sms.12678

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Pareja-Blanco F, Sanchez-Medina L, Suarez-Arrones L, Gonzalez-Badillo JJ. Effects of velocity loss during resistance training on performance in professional soccer players. Int J Sports Physiol Perform. 2017;12(4):512519. doi:10.1123/ijspp.2016-0170

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Rodriguez-Rosell D, Yanez-Garcia JM, Sanchez-Medina L, Mora-Custodio R, Gonzalez-Badillo JJ. Relationship between velocity loss and repetitions in reserve in the bench press and back squat exercises [published online ahead of print April 25, 2019]. J Strength Cond Res. doi:10.1519/JSC.0000000000002881

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Garcia-Pallares J, Izquierdo M. Strategies to optimize concurrent training of strength and aerobic fitness for rowing and canoeing. Sports Med. 2011;41(4):329343.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Izquierdo-Gabarren M, Gonzalez De Txabarri Exposito R, Garcia-pallares J, Sanchez-medina L, De Villarreal ES, Izquierdo M. Concurrent endurance and strength training not to failure optimizes performance gains. Med Sci Sports Exerc. 2010;42(6):11911199. PubMed ID: 19997025

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Boullosa DA, Tuimil JL, Alegre LM, Iglesias E, Lusquinos F. Concurrent fatigue and potentiation in endurance athletes. Int J Sports Physiol Perform. 2011;6(1):8293. PubMed ID: 21487152 doi:10.1123/ijspp.6.1.82

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Sánchez-Medina L, Pallarés JG, Pérez CE, Morán-Navarro R, González-Badillo JJ. Estimation of relative load from bar velocity in the full back squat exercise. Sports Med Int Open. 2017;1(02):E80E88. doi:10.1055/s-0043-102933

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Léger L, Boucher R. An indirect continuous running multistage field test: the Universite de Montreal track test. Can J Appl Sport Sci. 1980;5(2):7784. PubMed ID: 7389053

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Taylor HL, Buskirk E, Henschel A. Maximal oxygen intake as an objective measure of cardio-respiratory performance. J Appl Physiol. 1955;8(1):7380. PubMed ID: 13242493 doi:10.1152/jappl.1955.8.1.73

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Pareja-Blanco F, Alcazar J, Sanchez-Valdepenas J, et al. . Velocity loss as a critical variable determining the adaptations to strength training. Med Sci Sports Exerc. 2020;52(8):17521762. doi:10.1249/MSS.0000000000002295

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Sanchez-Medina L, Perez CE, Gonzalez-Badillo JJ. Importance of the propulsive phase in strength assessment. Int J Sports Med. 2010;31(2):123129. PubMed ID: 20222005 doi:10.1055/s-0029-1242815

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Gonzalez-Badillo JJ, Rodriguez-Rosell D, Sanchez-Medina L, et al. . Short-term recovery following resistance exercise leading or not to failure. Int J Sports Med. 2016;37(4):295304.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Moran-Navarro R, Perez CE, Mora-Rodriguez R, et al. . Time course of recovery following resistance training leading or not to failure. Eur J Appl Physiol. 2017;117(12):23872399. PubMed ID: 28965198

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Doma K, Deakin GB. The effects of strength training and endurance training order on running economy and performance. Appl Physiol Nutr Metab. 2013;38(6):651656. PubMed ID: 23724883 doi:10.1139/apnm-2012-0362

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Palmer CD, Sleivert GG. Running economy is impaired following a single bout of resistance exercise. J Sci Med Sport. 2001;4(4):447459. PubMed ID: 11905938 doi:10.1016/S1440-2440(01)80053-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Kyrolainen H, Pullinen T, Candau R, Avela J, Huttunen P, Komi PV. Effects of marathon running on running economy and kinematics. Eur J Appl Physiol. 2000;82(4):297304. PubMed ID: 10958372

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    de Souza EO, Tricoli V, Franchini E, Paulo AC, Regazzini M, Ugrinowitsch C. Acute effect of two aerobic exercise modes on maximum strength and strength endurance. J Strength Cond Res. 2007;21(4):12861290. PubMed ID: 18076237

    • Search Google Scholar
    • Export Citation
  • 35.

    Pareja-Blanco F, Villalba-Fernandez A, Cornejo-Daza PJ, Sanchez-Valdepenas J, Gonzalez-Badillo JJ. Time course of recovery following resistance exercise with different loading magnitudes and velocity loss in the set. Sports. 2019;7(3):59. doi:10.3390/sports7030059

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 581 581 91
Full Text Views 26 26 2
PDF Downloads 17 17 1