Effects of Velocity Loss Threshold Within Resistance Training During Concurrent Training on Endurance and Strength Performance

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Miguel Sánchez-Moreno
Search for other papers by Miguel Sánchez-Moreno in
Current site
Google Scholar
PubMed
Close
,
David Rodríguez-Rosell
Search for other papers by David Rodríguez-Rosell in
Current site
Google Scholar
PubMed
Close
,
David Díaz-Cueli
Search for other papers by David Díaz-Cueli in
Current site
Google Scholar
PubMed
Close
,
Fernando Pareja-Blanco
Search for other papers by Fernando Pareja-Blanco in
Current site
Google Scholar
PubMed
Close
, and
Juan José González-Badillo
Search for other papers by Juan José González-Badillo in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: This study analyzed the effects of 3 training interventions: 1 isolated endurance training (ET) and 2 concurrent training (CT), which differed in the velocity loss (VL) magnitude allowed during the resistance training (RT) set: 15% (VL15) versus 45%, on strength and endurance running performance. Methods: A total of 33 resistance- and endurance-trained men were randomly allocated into 3 groups: VL15, VL 45%, and ET. ET was similar across all groups. The CT groups differed in the VL allowed during the RT set. Before and after the 8-week training program the following tests were performed: (1) running sprints, (2) vertical jump, (3) progressive loading test in the squat exercise, and (4) incremental treadmill running test up to maximal oxygen uptake. Results: Significant differences (P < .001) in RT volume (approximately 401 vs 177 total repetitions for VL 45% and VL15, respectively) were observed. Significant “group” × “time” interactions were observed for vertical jump and all strength-related variables: the CT groups attained significantly greater gains than ET. Moreover, a significant “group” × “time” interaction (P = .03) was noted for velocity at maximal oxygen uptake. Although all groups showed increases in velocity at maximal oxygen uptake, the VL15 group achieved greater gains than the ET group. Conclusions: CT interventions experienced greater strength gains than the ET group. Although all groups improved their endurance performance, the VL15 intervention resulted in greater gains than the ET approach. Therefore, moderate VL thresholds in RT performed during CT could be a good strategy for concurrently maximizing strength and endurance development.

Sánchez-Moreno is with the Dept of Physical Education and Sports, Universidad de Sevilla, Seville, Spain. Rodríguez-Rosell and Pareja-Blanco are with the Dept of Sports and Computers Sciences, Universidad Pablo de Olavide, Seville, Spain. Díaz-Cueli is with the Medical Service, PFC CSKA Moscow, Moscow, Russia. González-Badillo is with the Physical Performance & Sports Research Center, Universidad Pablo de Olavide, Seville, Spain.

Sánchez-Moreno (msmoreno@us.es) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Gäbler M, Prieske O, Hortobágyi T, Granacher U. The effects of concurrent strength and endurance training on physical fitness and athletic performance in youth: a systematic review and meta-analysis. Front Physiol. 2018;9:1057. PubMed ID: 30131714 doi:10.3389/fphys.2018.01057

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Leveritt M, Abernethy PJ, Barry BK, Logan PA. Concurrent strength and endurance training. Sports Med. 1999;28(6):413427. PubMed ID: 10623984 doi:10.2165/00007256-199928060-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Taylor JB, Wright AA, Dischiavi SL, Townsend MA, Marmon AR. Activity demands during multi-directional team sports: a systematic review. Sports Med. 2017;47(12):25332551. PubMed ID: 28801751 doi:10.1007/s40279-017-0772-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Berryman N, Mujika I, Arvisais D, Roubeix M, Binet C, Bosquet L. Strength training for middle-and long-distance performance: a meta-analysis. Int J Sports Physiol Perform. 2018;13(1):5764. PubMed ID: 28459360 doi:10.1123/ijspp.2017-0032

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Berryman N, Mujika I, Bosquet L. Concurrent training for sports performance: the 2 sides of the medal. Int J Sports Physiol Perform. 2019;14(3):279285. PubMed ID: 29809072 doi:10.1123/ijspp.2018-0103

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Rønnestad BR, Mujika I. Optimizing strength training for running and cycling endurance performance: a review. Scand J Med Sci Sports. 2014;24(4):603612. PubMed ID: 23914932 doi:10.1111/sms.12104

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Beattie K, Kenny IC, Lyons M, Carson BP. The effect of strength training on performance in endurance athletes. Sports Med. 2014;44(6):845865. PubMed ID: 24532151 doi:10.1007/s40279-014-0157-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Beattie K, Carson BP, Lyons M, Rossiter A, Kenny IC. The effect of strength training on performance indicators in distance runners. J Strength Cond Res. 2017;31(1):923. PubMed ID: 27135468 doi:10.1519/JSC.0000000000001464

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Wilson JM, Marin PJ, Rhea MR, Wilson SM, Loenneke JP, Anderson JC. Concurrent training: a meta-analysis examining interference of aerobic and resistance exercises. J Strength Cond Res. 2012;26(8):22932307. PubMed ID: 22002517 doi:10.1519/JSC.0b013e31823a3e2d

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Sousa AC, Neiva HP, Izquierdo M, Cadore EL, Alves AR, Marinho DA. Concurrent training and detraining: brief review on the effect of exercise intensities. Int J Sports Med. 2019;40(12):747755. PubMed ID: 31476783 doi:10.1055/a-0975-9471

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Sanchez-Medina L, González-Badillo JJ. Velocity loss as an indicator of neuromuscular fatigue during resistance training. Med Sci Sports Exerc. 2011;43(9):17251734. PubMed ID: 21311352 doi:10.1249/MSS.0b013e318213f880

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Pareja-Blanco F, Rodríguez-Rosell D, Aagaard P, et al. Time course of recovery from resistance exercise with different set configurations [published online ahead of print July 20, 2018]. J Strength Cond Res. PubMed ID: 30036284 doi:10.1519/JSC.0000000000002756

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Izquierdo M, Ibanez J, González-Badillo JJ, et al. Differential effects of strength training leading to failure versus not to failure on hormonal responses, strength, and muscle power gains. J Appl Physiol. 2006;100(5):16471656. PubMed ID: 16410373 doi:10.1152/japplphysiol.01400.2005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Izquierdo-Gabarren M, Expósito RGDT, Garcia-Pallares J, Sanchez-Medina L, De Villarreal ESS, Izquierdo M. Concurrent endurance and strength training not to failure optimizes performance gains. Med Sci Sports Exerc. 2010;42(6):11911199.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Pareja-Blanco F, Rodríguez-Rosell D, Sánchez-Medina L, et al. Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scand J Med Sci Sports. 2017;27(7):724735. PubMed ID: 27038416 doi:10.1111/sms.12678

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Rodríguez-Rosell D, Yáñez-García JM, Sánchez-Medina L, Mora-Custodio R, González-Badillo JJ. Relationship between velocity loss and repetitions in reserve in the bench press and back squat exercises. J Strength Cond Res. 2020;34(9):25372547. PubMed ID: 31045753 doi:10.1519/JSC.0000000000002881

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Pareja-Blanco F, Alcazar J, Sánchez-Valdepeñas J, et al. Velocity loss as a critical variable determining the adaptations to strength training. Med Sci Sports Exerc. 2020;52(8):17521762. PubMed ID: 32049887 doi:10.1249/MSS.0000000000002295

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Rodríguez-Rosell D, Yáñez-García JM, Mora-Custodio R, et al. Velocity-based resistance training: impact of velocity loss in the set on neuromuscular performance and hormonal response. Appl Physiol Nutr Metab. 2020;45(8):817828. PubMed ID: 32017598 doi:10.1139/apnm-2019-0829

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Sanchez-Medina L, Perez C, Gonzalez-Badillo J. Importance of the propulsive phase in strength assessment. Int J Sports Med. 2010;31(2):123129. PubMed ID: 20222005 doi:10.1055/s-0029-1242815

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Sánchez-Medina L, Pallarés JG, Pérez CE, Morán-Navarro R, González-Badillo JJ. Estimation of relative load from bar velocity in the full back squat exercise. Sports Med Int Open. 2017;1(2):E80E88. PubMed ID: 30539090 doi:10.1055/s-0043-102933

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Taylor HL, Buskirk E, Henschel A. Maximal oxygen intake as an objective measure of cardio-respiratory performance. J Appl Physiol. 1955;8(1):7380. PubMed ID: 13242493 doi:10.1152/jappl.1955.8.1.73

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Nader GA. Concurrent strength and endurance training: from molecules to man. Med Sci Sports Exerc. 2006;38(11):19651970. PubMed ID: 17095931 doi:10.1249/01.mss.0000233795.39282.33

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Macgregor LJ, Hunter AM, Orizio C, Fairweather MM, Ditroilo M. Assessment of skeletal muscle contractile properties by radial displacement: the case for tensiomyography. Sports Med. 2018;48(7):16071620. PubMed ID: 29605838 doi:10.1007/s40279-018-0912-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Mikkola J, Rusko H, Nummela A, Pollari T, Häkkinen K. Concurrent endurance and explosive type strength training improves neuromuscular and anaerobic characteristics in young distance runners. Int J Sports Med. 2007;28(7):602611. PubMed ID: 17373596 doi:10.1055/s-2007-964849

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Taipale R, Mikkola J, Nummela A, et al. Strength training in endurance runners. Int J Sports Med. 2010;31(7):468476. PubMed ID: 20432192 doi:10.1055/s-0029-1243639

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Trowell D, Vicenzino B, Saunders N, Fox A, Bonacci J. Effect of strength training on biomechanical and neuromuscular variables in distance runners: a systematic review and meta-analysis. Sports Med. 2020;50(1):133150. PubMed ID: 31541409 doi:10.1007/s40279-019-01184-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Berryman N, Maurel D, Bosquet L. Effect of plyometric vs dynamic weight training on the energy cost of running. J Strength Cond Res. 2010;24(7):18181825. PubMed ID: 20543734 doi:10.1519/JSC.0b013e3181def1f5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Damasceno MV, Lima-Silva AE, Pasqua LA, et al. Effects of resistance training on neuromuscular characteristics and pacing during 10-km running time trial. Eur J Appl Physiol. 2015;115(7):15131522. PubMed ID: 25697149 doi:10.1007/s00421-015-3130-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Paavolainen L, Hakkinen K, Hamalainen I, Nummela A, Rusko H. Explosive-strength training improves 5-km running time by im proving running economy and muscle power. J Appl Physiol. 1999;86(5):15271533. PubMed ID: 10233114 doi:10.1152/jappl.1999.86.5.1527

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Millet GP, Jaouen B, Borrani F, Candau R. Effects of concurrent endurance and strength training on running economy and VO2 kinetics. Med Sci Sports Exerc. 2002;34(8):13511359. PubMed ID: 12165692 doi:10.1097/00005768-200208000-00018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Fletcher JR, MacIntosh BR. Running economy from a muscle energetics perspective. Front Physiol. 2017;8:433. PubMed ID: 28690549 doi:10.3389/fphys.2017.00433

  • 32.

    Doma K, Deakin GB, Bentley DJ. Implications of impaired endurance performance following single bouts of resistance training: an alternate concurrent training perspective. Sports Med. 2017;47(11):21872200. PubMed ID: 28702901 doi:10.1007/s40279-017-0758-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Fyfe JJ, Bartlett JD, Hanson ED, Stepto NK, Bishop DJ. Endurance training intensity does not mediate interference to maximal lower-body strength gain during short-term concurrent training. Front Physiol. 2016;7:487. PubMed ID: 27857692 doi:10.3389/fphys.2016.00487

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Varela-Sanz A, Tuimil JL, Abreu L, Boullosa DA. Does concurrent training intensity distribution matter? J Strength Cond Res. 2017;31(1):181195. PubMed ID: 27172269 doi:10.1519/JSC.0000000000001474

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 6150 2184 163
Full Text Views 139 37 1
PDF Downloads 171 62 1