Physiological and Mechanical Indices Serving the New Cross-Country Olympic Mountain Bike Performance

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Objectives: To identify relevant physiological, mechanical, and strength indices to improve the evaluation of elite mountain bike riders competing in the current Cross-Country Olympic (XCO) format. Methods: Considering the evolution of the XCO race format over the last decade, the present testing protocol adopted a battery of complementary laboratory cycling tests: a maximal aerobic consumption, a force–velocity test, and a multi-short-sprint test. A group of 33 elite-level XCO riders completed the entire testing protocol and at least 5 international competitions. Results: Very large correlations were found between the XCO performance and maximal aerobic power output (r = .78; P < .05), power at the second ventilation threshold (r = .83; P < .05), maximal pedaling force (r = .77; P < .05), and maximum power in the sixth sprint (r = .87; P < .05) of the multi-short-sprint test. A multiple regression model revealed that the normalized XCO performance was predicted at 89.2% (F 3,29 = 89.507; r = .95; P < .001) by maximum power in the sixth sprint (β = 0.602; P < .001), maximal pedaling rate (β = 0.309; P < .001), and relative maximal aerobic power output (β = 0.329; P < .001). Discussion: Confirming our expectations, the current XCO performance was highly correlated with a series of physiological and mechanical parameters reflecting the high level of acyclic and intermittent solicitation of both aerobic and anaerobic metabolic pathways and the required qualities of maximal force and velocity. Conclusion: The combination of physiological, mechanical, and strength characteristics may thus improve the prediction of elite XCO cyclists’ performance. It seems of interest to evaluate the ability to repeatedly produce brief intensive efforts with short active recovery periods.

Hays, Nicol, Bertin, and Hardouin are with the CNRS, ISM, UMR 7287 Aix-Marseille University, Marseille, France. Brisswalter is with the Laboratoire Motricité Expertise Sport Santé, Université Côte d’Azur, Nice, France.

Hays (arnaud.hays@univ-amu.fr) is corresponding author.
  • 1.

    Impellizzeri FM. Correlations between physiological variables and performance in high level cross country off road cyclists. Br J Sports Med. 2005;39(10):747751. PubMed ID: 16183772 doi:10.1136/bjsm.2004.017236

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Gregory J, Johns DP, Walls JT. Relative vs absolute physiological measures as predictors of mountain bike cross-country race performance. J Strength Cond Res. 2007;21(1):1722. PubMed ID: 17313256 doi:10.1519/00124278-200702000-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Prins L, Terblanche E, Myburgh KH. Field and laboratory correlates of performance in competitive cross-country mountain bikers. J Sports Sci. 2007;25(8):927935. PubMed ID: 17474046 doi:10.1080/02640410600907938

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Bejder J, Bonne TC, Nyberg M, Sjøberg KA, Nordsborg NB. Physiological determinants of elite mountain bike cross-country Olympic performance. J Sports Sci. 2019;37(10):11541161. PubMed ID: 30430912 doi:10.1080/02640414.2018.1546546

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Inoue A, Sa Filho AS, Mello FCM, Santos TM. Relationship between anaerobic cycling tests and mountain bike cross-country performance: J Strength Cond Res. 2012;26(6):15891593. PubMed ID: 21912290 doi:10.1519/JSC.0b013e318234eb89

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Granier C, Abbiss CR, Aubry A, et al. . Power output and pacing during international cross-country mountain bike cycling. Int J Sports Physiol Perform. 2018;13(9):12431249. doi:10.1123/ijspp.2017-0516

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Hays A, Devys S, Bertin D, Marquet L, Brisswalter J. Understanding the physiological requirements of the mountain bike cross-country Olympic race format. Front Physiol. 2018;9:1062. PubMed ID: 30158873 doi:10.3389/fphys.2018.01062

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Bangsbo J, Iaia FM, Krustrup P. Metabolic response and fatigue in soccer. Int J Sports Physiol Perform. 2007;2(2):111127. PubMed ID: 19124899 doi:10.1123/ijspp.2.2.111

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Nicolò A, Bazzucchi I, Haxhi J, Felici F, Sacchetti M. Comparing continuous and intermittent exercise: an “isoeffort” and “isotime” approach. PLoS One. 2014;9(4):e94990. doi:10.1371/journal.pone.0094990

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    McLellan TM. Ventilatory and plasma lactate response with different exercise protocols: a comparison of methods. Int J Sports Med. 1985;6(1):3035. doi:10.1055/s-2008-1025809

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Arsac LM, Belli A, Lacour J-R. Muscle function during brief maximal exercise: accurate measurements on a friction-loaded cycle ergometer. Eur J Appl Physiol. 1996;74(1–2):100106. doi:10.1007/BF00376501

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Dorel S, Hautier CA, Rambaud O, et al. . Torque and power-velocity relationships in cycling: relevance to track sprint performance in world-class cyclists. Int J Sports Med. 2005;26(9):739746. PubMed ID: 16237619 doi:10.1055/s-2004-830493

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Keene ON. The log transformation is special. Stat Med. 1995;14(8):811819. PubMed ID: 7644861 doi:10.1002/sim.4780140810

  • 14.

    Batterham AM, Hopkins WG. Making meaningful inferences about magnitudes. Int J Sports Physiol Perform. 2006;1(1):5057. PubMed ID: 19114737 doi:10.1123/ijspp.1.1.50

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Baron R. Aerobic and anaerobic power characteristics of off-road cyclists. Med Sci Sports Exerc. 2001;33(8):13871393. PubMed ID: 11474343 doi:10.1097/00005768-200108000-00022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Impellizzeri F, Sassi A, Rodriguez-Alonso M, Mognoni P, Marcora S. Exercise intensity during off-road cycling competitions. Med Sci Sports Exerc. 2002;34(11):18081813. PubMed ID: 12439087 doi:10.1097/00005768-200211000-00018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Stapelfeldt B, Schwirtz A, Schumacher YO. Workload demands in mountain bike racing. Int J Sports Med. 2004;25(4):294300. PubMed ID: 15162249 doi:10.1055/s-2004-819937

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Kumagai S, Tanaka K, Matsuura Y, Matsuzaka A, Hirakoba K, Asano K. Relationships of the anaerobic threshold with the 5 km, 10 km, and 10 mile races. Eur J Appl Physiol. 1982;49(1):1323. doi:10.1007/BF00428959

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Ghosh AK. Anaerobic threshold: its concept and role in endurance sport. Malays J Med Sci MJMS. 2004;11(1):2436. PubMed ID: 22977357

  • 20.

    Impellizzeri FM, Marcora SM. The physiology of mountain biking: Sports Med. 2007;37(1):5971. PubMed ID: 17190536 doi:10.2165/00007256-200737010-00005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Glaister M. Multiple sprint work: physiological responses, mechanisms of fatigue and the influence of aerobic fitness. Sports Med. 2005;35(9):757777. PubMed ID: 16138786 doi:10.2165/00007256-200535090-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    da Silva JF, Guglielmo LGA, Bishop D. Relationship between different measures of aerobic fitness and repeated-sprint ability in elite soccer players. J Strength Cond Res. 2010;24(8):21152121. doi:10.1519/JSC.0b013e3181e34794

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Westerblad H, Allen DG, Lännergren J. Muscle fatigue: lactic acid or inorganic phosphate the major cause? Physiology. 2002;17(1):1721. doi:10.1152/physiologyonline.2002.17.1.17

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Girard O, Mendez-Villanueva A, Bishop D. Repeated-sprint ability—part I. Sports Med. 2011;41(8):673694. PubMed ID: 21780851 doi:10.2165/11590550-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Vandewalle H, Peres G, Heller J, Panel J, Monod H. Force–velocity relationship and maximal power on a cycle ergometer: correlation with the height of a vertical jump. Eur J Appl Physiol. 1987;56(6):650656. doi:10.1007/BF00424805

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Hautier CA, Linossier MT, Belli A, Lacour JR, Arsac LM. Optimal velocity for maximal power production in non-isokinetic cycling is related to muscle fibre type composition. Eur J Appl Physiol. 1996;74(1–2):114118. doi:10.1007/BF00376503

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Lee H, Martin DT, Anson JM, Grundy D, Hahn AG. Physiological characteristics of successful mountain bikers and professional road cyclists. J Sports Sci. 2002;20(12):10011008. PubMed ID: 12477010 doi:10.1080/026404102321011760

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Sánchez-Muñoz C, Muros JJ, Zabala M. World and Olympic mountain bike champions’ anthropometry, body composition and somatotype. J Sports Med Phys Fitness. 2018;58(6):843851. PubMed ID: 28462576 doi:10.23736/s0022-4707.17.07179-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Miller MC, Macdermid PW, Fink PW, Stannard SR. Agreement between Powertap, Quarq and Stages power meters for cross-country mountain biking. Sports Technol. 2015;8(1–2):4450. doi:10.1080/19346182.2015.1108979

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Miller MC, Macdermid PW, Fink PW, Stannard SR. Performance and physiological effects of different descending strategies for cross-country mountain biking. Eur J Sport Sci. 2017;17(3):279285. PubMed ID: 27712198 doi:10.1080/17461391.2016.1237550

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 211 211 159
Full Text Views 13 13 8
PDF Downloads 5 5 2