Training Intensity Distribution, Training Volume, and Periodization Models in Elite Swimmers: A Systematic Review

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

A well-planned periodized approach allows swimmers to achieve peak performance at the major national and international competitions. Purpose: To identify the main characteristics of endurance training for highly trained swimmers described by the training intensity distribution (TID), volume, and periodization models. Methods: The electronic databases Scopus, PubMed, and Web of Science were searched using a comprehensive list of relevant terms. Studies that investigated the effect of the periodization of training in swimming, with the training load (volume, TID) and periodization reported, were included in the systematic review. Results: A total of 3487 studies were identified, and after removal of duplicates and elimination of papers based on title and abstract screening, 17 articles remained.  A further 8 articles were excluded after full text review, leaving a final total of 9 studies in the systematic review. The evidence levels were 1b for intervention studies (n = 3) and 2b for (observational) retrospective studies (n = 6). The sprint swimmers typically followed a polarized and threshold TID, the middle-distance swimmers followed a threshold and pyramidal TID, and the long-distance swimmers primarily followed a pyramidal TID. The periodization model identified in the majority of studies selected is characterized by wave-like cycles in units like mesocycles to promote physiological adaptations and skill acquisition. Conclusions: Highly trained swimmers follow a training volume and TID based on their primary event. There is a need for further experimental studies on the effects of block and reverse periodization models on swimming performance. Although observational studies of training have limited evidence, it is unclear whether a different training/periodization approach would yield better results.

González-Ravé, Hermosilla, and González-Mohíno are with the Sport Training Lab, Faculty of Sport Sciences, University of Castilla-La Mancha, Toledo, Spain. Hermosilla and González-Mohíno are also with the School of Languages and Education, Nebrija University, Madrid, Spain. Casado is with the Center for Sport Studies, Rey Juan Carlos University, Madrid, Spain. Pyne is with the Faculty of Health, Research Inst for Sport and Exercise, University of Canberra, Canberra, ACT, Australia.

González-Mohíno (Fernando.gmayoralas@uclm.es) is corresponding author.
  • 1.

    Pyne DB, Sharp RL. Physical and energy requirements of competitive swimming events. Int J Sport Nutr Exerc Metab. 2014;24(4):351359. PubMed ID: 25029351. doi:10.1123/ijsnem.2014-0047

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Nugent FJ, Comyns TM, Warrington GD. Quality versus quantity debate in swimming: perceptions and training practices of expert swimming coaches. J Hum Kinet. 2017;57(1):147158. PubMed ID: 28713467 doi:10.1515/hukin-2017-0056

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Capelli C, Pendergast DR, Termin B. Energetics of swimming at maximal speeds in humans. Eur J Appl Physiol Occup Physiol. 1998;78(5):385393. PubMed ID: 9809837 doi:10.1007/s004210050435

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Zamparo P, Capelli C, Cautero M, Di Nino A. Energy cost of front-crawl swimming at supra-maximal speeds and underwater torque in young swimmers. Eur J Appl Physiol. 2000;83:487491. PubMed ID: 11192054 doi:10.1007/s004210000318

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Barbosa TM, Fernandes R, Keskinen K, et al. Evaluation of the energy expenditure in competitive swimming strokes. Int J Sports Med. 2006;27(11):894899. PubMed ID: 16612740 doi:10.1055/s-2006-923776

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Riewald SA, Rodeo SA. Science of Swimming Faster. Champaign, IL: Human Kinetics; 2015.

  • 7.

    González-Ravé JM. Periodization in sport training: traditional, blocks and polarized. In: Morouço P, Takagi H, Fernandes RJ, eds. Sport Science: Current and Future Trends for Performance Optimization. Leiria, Portugal: ESECS/Instituto Politécnico de Leiria; 2018:2452.

    • Search Google Scholar
    • Export Citation
  • 8.

    Bompa TO, Haff GG. Periodization: Theory and Methodology of Training. Champaign, IL: Human Kinetics; 2009.

  • 9.

    Matveyev LP. Periodization of Sports Training. Moscow: Fiscultura I Sport; 1966.

  • 10.

    Fleck SJ. Periodized strength training: a critical review. J Strength Cond Res. 1999;13(1):8289.

  • 11.

    Mujika I, Chatard J-C, Busso T, Geyssant A, Barale F, Lacoste L. Effects of training on performance in competitive swimming. Can J Appl Physiol. 1995;20(4):395406. PubMed ID: 8563672 doi:10.1139/h95-031

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Chatard J, Stewart A. Training load and performance in swimming. In: Seifert D, Chollet D, Mujika I, eds. World Book of Swimming: From Science to Performance. New York, NY: Nova Science Publishers, Inc; 2011:359373.

    • Search Google Scholar
    • Export Citation
  • 13.

    Pyne D. The periodisation of swimming training at the Australian Institute of Sport. Sports Coach. 1996;18:3438.

  • 14.

    Kiely J. Periodization theory: confronting an inconvenient truth. Sports Med. 2018;48(4):753764. PubMed ID: 29189930 doi:10.1007/s40279-017-0823-y

  • 15.

    Stewart AM, Hopkins WG. Seasonal training and performance of competitive swimmers. J Sports Sci. 2000;18(11):873884. PubMed ID: 11144864. doi:10.1080/026404100750017805

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Seiler S. What is best practice for training intensity and duration distribution in endurance athletes? Int J Sports Physiol Perform. 2010;5(3):276291. PubMed ID: 20861519 doi:10.1123/ijspp.5.3.276

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Clemente-Suárez V, Fernandes RJ, de Jesus K, Pelarigo JG, Arroyo-Toledo JJ, Vilas-Boas JP. Do traditional and reverse swimming training periodizations lead to similar aerobic performance improvements? J Sports Med Phys Fitness. 2018;58(6):761767. PubMed ID: 29877679 doi:10.23736/S0022-4707.17.07465-5

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Laffite LP, Vilas-Boas JP, Demarle A, Silva J, Fernandes R, Louise Billat V. Changes in physiological and stroke parameters during a maximal 400-m free swimming test in elite swimmers. Can J Appl Physiol. 2004;29(S1):S17S31. PubMed ID: 15602082 doi:10.1139/h2004-055

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Hellard P, Avalos-Fernandes M, Lefort G, et al. Elite swimmers’ training patterns in the 25 weeks prior to their season’s best performances: insights into periodization from a 20-years cohort. Front Physiol. 2019;10:363. PubMed ID: 31031631 doi:10.3389/fphys.2019.00363

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Hellard P, Scordia C, Avalos M, Mujika I, Pyne DB. Modelling of optimal training load patterns during the 11 weeks preceding major competition in elite swimmers. Appl Physiol Nutr Metab. 2017;42(10):11061117. PubMed ID: 28651061 doi:10.1139/apnm-2017-0180

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Pla R, Le Meur Y, Aubry A, Toussaint J, Hellard P. Effects of a 6-week period of polarized or threshold training on performance and fatigue in elite swimmers. Int J Sports Physiol Perform. 2019;14(2):183189. PubMed ID: 30040002 doi:10.1123/ijspp.2018-0179

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Clemente-Suárez V, Fernandes RJ, Arroyo-Toledo J, Figueiredo P, González-Ravé JM, Vilas-Boas J. Autonomic adaptation after traditional and reverse swimming training periodizations. Acta Physiol Hung. 2015;102(1):105113. PubMed ID: 25804392 doi:10.1556/APhysiol.102.2015.1.11

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Stöggl TL, Sperlich B. The training intensity distribution among well-trained and elite endurance athletes. Front Physiol. 2015;6:295. PubMed ID: 26578968 doi:10.3389/fphys.2015.00295

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Avalos M, Hellard P, Chatard J-C. Modeling the training-performance relationship using a mixed model in elite swimmers. Med Sci Sports Exerc. 2003;35(5):838846. PubMed ID: 12750595 doi:10.1249/01.MSS.0000065004.05033.42

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Pollock S, Gaoua N, Johnston MJ, Cooke K, Girard O, Mileva KN. Training regimes and recovery monitoring practices of elite British swimmers. J Sports Sci Med. 2019;18(3):577585. PubMed ID: 31427881

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Kenneally M, Casado A, Santos-Concejero J. The effect of periodization and training intensity distribution on middle-and long-distance running performance: a systematic review. Int J Sports Physiol Perform. 2018;13(9):11141121. PubMed ID: 29182410 doi:10.1123/ijspp.2017-0327

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Galbraith A, Hopker J, Cardinale M, Cunniffe B, Passfield L. A 1-year study of endurance runners: training, laboratory tests, and field tests. Int J Sports Physiol Perform. 2014;9(6):10191025. PubMed ID: 24664950 doi:10.1123/ijspp.2013-0508

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. PubMed ID: 19622551 doi:10.1136/bmj.b2535

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    de Morton NA. The PEDro scale is a valid measure of the methodological quality of clinical trials: a demographic study. Aust J Physiother. 2009;55(2):129133. PubMed ID: 19463084 doi:10.1016/s0004-9514(09)70043-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Wells GA, Shea B, O’Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. The Ottawa Hospital Research Institute. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp

    • Search Google Scholar
    • Export Citation
  • 31.

    Centre for Evidence-Based Medicine. Oxford Centre for Evidence-Based Medicine: Levels of Evidence. University of Oxford; 2009 . https://www.cebm.ox.ac.uk/resources/levels-of-evidence/oxford-centre-for-evidence-based-medicine-levels-of-evidence-march-2009

    • Search Google Scholar
    • Export Citation
  • 32.

    Wenger H, Bell G. The interactions of intensity, frequency and duration of exercise training in altering cardiorespiratory fitness. Sports Med. 1986;3(5):346356. PubMed ID: 3529283 doi:10.2165/00007256-198603050-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Fiskerstrand Å, Seiler K. Training and performance characteristics among Norwegian international rowers 1970–2001. Scand J Med Sci Sports. 2004;14(5):303310. PubMed ID: 15387804 doi:10.1046/j.1600-0838.2003.370.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Orie J, Hofman N, de Koning JJ, Foster C. Thirty-eight years of training distribution in Olympic speed skaters. Int J Sports Physiol Perform. 2014;9(1):9399. PubMed ID: 24408352 doi:10.1123/IJSPP.2013-0427

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Costill D, Thomas R, Robergs R, et al. Adaptations to swimming training: influence of training volume. Med Sci Sports Exerc. 1991;23(3):371377. PubMed ID: 2020277

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Bonifazi M, Sardella F, Lupo C. Preparatory versus main competitions: differences in performances, lactate responses and pre-competition plasma cortisol concentrations in elite male swimmers. Eur J Appl Physiol. 2000;82(5–6):368373. PubMed ID: 10985589 doi:10.1007/s004210000230

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Seiler S, Haugen O, Kuffel E. Autonomic recovery after exercise in trained athletes: intensity and duration effects. Med Sci Sports Exerc. 2007;39(8):13661373. PubMed ID: 17762370 doi:10.1249/mss.0b013e318060f17d

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Rose AJ, Frøsig C, Kiens B, Wojtaszewski JF, Richter EA. Effect of endurance exercise training on Ca2+–calmodulin-dependent protein kinase II expression and signalling in skeletal muscle of humans. J Physiol. 2007;583(2):785795. PubMed ID: 17627985 doi:10.1113/jphysiol.2007.138529

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Chen Z-P, Stephens TJ, Murthy S, et al. Effect of exercise intensity on skeletal muscle AMPK signaling in humans. Diabetes. 2003;52(9):22052212. PubMed ID: 12941758. doi:10.2337/diabetes.52.9.2205

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Wojtaszewski JF, Nielsen P, Hansen BF, Richter EA, Kiens B. Isoform-specific and exercise intensity-dependent activation of 5′-AMP-activated protein kinase in human skeletal muscle. J Physiol. 2000;528(1):221226. PubMed ID: 11018120. doi:10.1111/j.1469-7793.2000.t01-1-00221.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Arroyo-Toledo JJ, Clemente VJ, Gonzalez-Rave JM, Ramos Campo DJ, Sortwell A. Comparison between traditional and reverse periodization: swimming performance and specific strength values. Int J Swim Kinet. 2013;2:8796.

    • Search Google Scholar
    • Export Citation
  • 42.

    Afonso J, Clemente FM, Ribeiro J, Ferreira M, Fernandes RJ. Towards a de facto nonlinear periodization: extending nonlinearity from programming to periodizing. Sports. 2020;8(8):110. PubMed ID: 32784454 doi:10.3390/sports8080110

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Hornsby WG, Fry AC, Haff GG, Stone MH. Addressing the confusion within periodization research. J Funct Morphol Kinesiol. 2020;5(3):68. PubMed ID: 33467283 doi:10.3390/jfmk5030068

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Cunanan AJ, DeWeese BH, Wagle JP, et al. The general adaptation syndrome: a foundation for the concept of periodization. Sports Med. 2018;48(4):787797. PubMed ID: 29307100 doi:10.1007/s40279-017-0855-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Maglischo EW. Swimming Fastest. Champaign, IL: Human Kinetics; 2003.

  • 46.

    Hellard P, Avalos M, Hausswirth C, Pyne D, Toussaint J-F, Mujika I. Identifying optimal overload and taper in elite swimmers over time. J Sports Sci Med. 2013;12(4):668678. PubMed ID: 24421726

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Sylta Ø, Tønnessen E, Hammarström D, et al. The effect of different high-intensity periodization models on endurance adaptations. Med Sci Sports Exerc. 2016;48(1):21652174. PubMed ID: 27300278 doi:10.1249/MSS.0000000000001007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Sweetenham B, Atkinson J. Championship Swim Training. Vol 1. Champaign, IL: Human Kinetics; 2003.

  • 49.

    Mattocks KT, Dankel SJ, Buckner SL, et al. Periodization: what is it good for? J Trainol. 2016;5(1):612. doi:10.17338/trainology.5.1_6

  • 50.

    Kataoka R, Vasenina E, Loenneke J, Buckner SL. Periodization: variation in the definition and discrepancies in study design. Sports Med. 2021;51:625651. PubMed ID: 33405190 doi:10.1007/s40279-020-01414-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Halperin I, Vigotsky AD, Foster C, Pyne DB. Strengthening the practice of exercise and sport-science research. Int J Sports Physiol Perform. 2018;13(2):127134. PubMed ID: 28787228 doi:10.1123/ijspp.2017-0322

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Mølmen KS, Øfsteng SJ, Rønnestad BR. Block periodization of endurance training–a systematic review and meta-analysis. Open Access J Sports Med. 2019;10:145. PubMed ID: 31802956 doi:10.2147/OAJSM.S180408

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Solli GS, Tønnessen E, Sandbakk Ø. Block vs traditional periodization of HIT: two different paths to success for the world’s best cross-country skier. Front Physiol. 2019;10:375. PubMed ID: 31024338 doi:10.3389/fphys.2019.00375

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    García-Pallares J, García M, Sánchez L. Performance changes in world-class kayakers following two different training periodization models. Eur J Appl Physiol. 2010;110:99107. PubMed ID: 20414669 doi:10.1007/s00421-010-1484-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Kiely J, Pickering C, Halperin I. Comment on “Biological background of block periodized endurance training: a review.” Sports Med. 2019;49(9):14751477. PubMed ID: 31054093 doi:10.1007/s40279-019-01114-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56.

    Issurin VB. Biological background of block periodized endurance training: a review. Sports Med. 2019;49(1):3139. PubMed ID: 30411234 doi:10.1007/s40279-018-1019-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 36 36 36
Full Text Views 6 6 6
PDF Downloads 6 6 6