Effect of Pause Versus Rebound Techniques on Neuromuscular and Functional Performance After a Prolonged Velocity-Based Training

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: A variation of the traditional squat (SQ) rebound technique (REBOUND) including a momentary pause ∼2 seconds (PAUSE) between eccentric and concentric phases has been proposed. Although there is a consensus about the lower acute effects on performance of this PAUSE variant compared with traditional REBOUND technique, no information exists about the differences in longitudinal adaptations of these SQ executions. Methods: A total of 26 men were randomly assigned into the PAUSE (n = 13) or REBOUND (n = 13) groups and completed a 10-week velocity-based training using the SQ exercise, only differing in the technique. Neuromuscular adaptations were assessed by the changes in the 1-repetition maximum strength and mean propulsive velocity achieved against the absolute loads (in kilograms) common to pretest and posttest. Functional performance was evaluated by the following tests: countermovement jump, Wingate, and sprint time at 0 to 10, 10 to 20, and 0 to 20 m. Results: Whereas both groups showed significant increases in most of the neuromuscular tests (P < .05), the PAUSE (effect size [ES] = 0.76–1.12) presented greater enhancements than REBOUND (ES = 0.45–0.92). Although not significant, improvements in Wingate and sprint time at 0 to 10 and 0 to 20 m were higher for PAUSE (ES = 0.31–0.46) compared with REBOUND (ES = 0.10–0.29). Conversely, changes on countermovement jump and sprint time at 10 to 20 m were superior for REBOUND (ES = 0.17–0.88) than for PAUSE (ES = 0.09–0.75). Conclusion: Imposing a pause between eccentric and concentric phases in the SQ exercise could be an interesting strategy to increase neuromuscular and functional adaptations in sport actions that mainly depend on concentric contractions. Moreover, sport abilities highly dependent on the stretch-shortening cycle could benefit from the REBOUND or a combination of the 2 techniques.

The authors are with the Human Performance and Sports Science Laboratory, Faculty of Sport Sciences, University of Murcia, Murcia, Spain.

Pallarés (jgpallares@um.es) is corresponding author.
  • 1.

    Hartmann H, Wirth K, Klusemann M. Analysis of the load on the knee joint and vertebral column with changes in squatting depth and weight load. Sport Med. 2013;43(10):9931008. PubMed ID: 23821469 doi:10.1007/s40279-013-0073-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Pallarés JG, Cava AM, Courel-Ibáñez J, González-Badillo JJ, Morán-Navarro R. Full squat produces greater neuromuscular and functional adaptations and lower pain than partial squats after prolonged resistance training. Eur J Sport Sci. 2020;20(1):115124. PubMed ID: 31092132 doi:10.1080/17461391.2019.1612952

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Galiano C, Pareja-Blanco F, Hidalgo de Mora J, Sáez de Villarreal E. Low-velocity loss induces similar strength gains to moderate-velocity loss during resistance training [published online ahead of print January 3, 2020]. J Strength Cond Res. PubMed ID: 31904715 doi:10.1519/JSC.0000000000003487

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Rønnestad BR, Hansen J, Hollan I, Ellefsen S. Strength training improves performance and pedaling characteristics in elite cyclists. Scand J Med Sci Sport. 2015;25(1):e8998. PubMed ID: 24862305 doi:10.1111/sms.12257

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Izquierdo-Gabarren M, González De Txabarri R, Pallarés JG, Sánchez-Medina L, De Villarreal E, Izquierdo M. Concurrent endurance and strength training not to failure optimizes performance gains. Med Sci Sports Exerc. 2010;42(6):11911199. PubMed ID: 19997025 doi:10.1249/MSS.0b013e3181c67eec

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Sánchez-Medina L, Pallarés JG, Pérez C, Morán-Navarro R, González-Badillo JJ. Estimation of relative load from bar velocity in the full back squat exercise. Sport Med Int Open. 2017;1(2):e80e88. PubMed ID: 30539090 doi:10.1055/s-0043-102933

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Martínez-Cava A, Morán-Navarro R, Sánchez-Medina L, González-Badillo JJ, Pallarés JG. Velocity- and power-load relationships in the half, parallel and full back squat. J Sports Sci. 2019;37(10):10881096. PubMed ID: 30426840 doi:10.1080/02640414.2018.1544187

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Morán-Navarro R, Martínez-Cava A, Sánchez-Medina L, Mora-Rodríguez R, González-Badillo JJ, Pallarés JG. Movement velocity as a measure of level of effort during resistance exercise. J Strength Cond Res. 2019;33(6):14961504. PubMed ID: 29944141 doi:10.1519/JSC.0000000000002017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Pallarés JG, Sánchez-Medina L, Pérez CE, De La Cruz-Sánchez E, Mora-Rodriguez R. Imposing a pause between the eccentric and concentric phases increases the reliability of isoinertial strength assessments. J Sports Sci. 2014;32(12):11651175. PubMed ID: 24575723 doi:10.1080/02640414.2014.889844

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Pérez-Castilla A, García-Ramos A, Padial P, Morales-Artacho AJ, Feriche B. Load-velocity relationship in variations of the half-squat exercise: influence of execution technique. J Strength Cond Res. 2020;34(4):10241031. PubMed ID: 28885389 doi:10.1519/JSC.0000000000002072

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Van Hooren B, Zolotarjova J. The difference between countermovement and squat jump performances: a review of underlying mechanisms with practical applications. J Strength Cond Res. 2017;31(7):20112020. PubMed ID: 28640774 doi:10.1519/JSC.0000000000001913

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Komi PV. Physiological and biomechanical correlates of muscle function: effects of muscle structure and stretch–shortening cycle on force and speed. Exerc Sport Sci Rev. 1984;12:81121. PubMed ID: 6376140

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Cronin JB, McNair PJ, Marshall RN. Magnitude and decay of stretch-induced enhancement of power output. Eur J Appl Physiol. 2001;84(6):575581. PubMed ID: 11482554 doi:10.1007/s004210100433

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Wilson GJ, Wood GA, Elliott BC. Optical stiffness of series elastic component in a stretch-shorten cycle activity. J Appl Physiol. 1991;70(9):825833. PubMed ID: 2022574 doi:10.1152/jappl.1991.70.2.825

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Pareja-Blanco F, Rodríguez-Rosell D, Sánchez-Medina L, Gorostiaga EM, González-Badillo JJ. Effect of movement velocity during resistance training on neuromuscular performance. Int J Sports Med. 2014;35(11):916924. PubMed ID: 24886926 doi:10.1055/s-0033-1363985

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Pareja-Blanco F, Rodríguez-Rosell D, Sánchez-Medina L, et al. Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scand J Med Sci Sport. 2017;27(7):724735. PubMed ID: 27038416 doi:10.1111/sms.12678

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    González-Badillo JJ, Sánchez-Medina L. Movement velocity as a measure of loading intensity in resistance training. Int J Sports Med. 2010;31(5):34735.

  • 18.

    Pallarés J, López-Samanes A, Fernández-Elías VE, et al. Pseudoephedrine and circadian rhythm interaction on neuromuscular performance. Scand J Med Sci Sport. 2015;25(6):e603e612. PubMed ID: 25515692 doi:10.1111/sms.12385

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Courel-Ibáñez J, Martínez-Cava A, Morán-Navarro R, et al. Reproducibility and repeatability of five different technologies for bar velocity measurement in resistance training. Ann Biomed Eng. 2019;47(7):15231538. PubMed ID: 30980292 doi:10.1007/s10439-019-02265-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Martínez-Cava A, Hernández-Belmonte A, Courel-Ibáñez J, Morán-Navarro R, González-Badillo JJ, Pallarés JG. Reliability of technologies to measure the barbell velocity: implications for monitoring resistance training. PLoS One. 2020;15(6):e0232465. PubMed ID: 32520952 doi:10.1371/journal.pone.0232465

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Pallarés JG, Fernández-Elías VE, Ortega JF, Muñoz G, Muñoz-Guerra J, Mora-Rodríguez R. Neuromuscular responses to incremental caffeine doses: performance and side effects. Med Sci Sports Exerc. 2013;45(11):21842192. PubMed ID: 23669879 doi:10.1249/MSS.0b013e31829a6672

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Martínez-Cava A, Hernández-Belmonte A, Courel-Ibáñez J, Morán-Navarro R, González-Badillo JJ, Pallarés JG. Bench press at full range of motion produces greater neuromuscular adaptations than partial executions after prolonged resistance training [published online ahead of print September 26, 2019]. J Strength Cond Res. PubMed ID: 31567719 doi:10.1519/JSC.0000000000003391

    • Search Google Scholar
    • Export Citation
  • 23.

    Siahkouhian M, Khodadadi D, Shahmoradi K. Effects of high-intensity interval training on aerobic and anaerobic indices: comparison of physically active and inactive men. Sci Sport. 2013;28(5):e119e125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Rodríguez-Rosell D, Franco-Márquez F, Pareja-Blanco F, et al. Effects of 6 weeks resistance training combined with plyometric and speed exercises on physical performance of pre-peak-height-velocity soccer players. Int J Sports Physiol Perform. 2016;11(2):240246. PubMed ID: 26218231 doi:10.1123/ijspp.2015-0176

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. Introduction to Meta-AnalysisHoboken, NJJohn Wiley & Sons; 2011.

  • 26.

    Orange ST, Metcalfe JW, Robinson A, Applegarth MJ, Liefeith A. Effects of in-season velocity- versus percentage-based training in academy rugby league players [published online ahead of print October 30, 2019]. Int J Sports Physiol Perform. PubMed ID: 31672928 doi:10.1123/ijspp.2019-0058

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Dorrell HF, Smith MF, Gee TI. Comparison of velocity-based and traditional percentage-based loading methods on maximal strength and power adaptations. J Strength Cond Res. 2019;34(1):4653. PubMed ID: 30946276 doi:10.1519/JSC.0000000000003089

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Cardinale M, Newton R, Nosaka K. Strength and Conditioning: Biological Principles and Practical Applications. Hoboken: John Wiley & Sons; 2011.

    • Search Google Scholar
    • Export Citation
  • 29.

    Van Den Tillaar R, Ettema G. A comparison of muscle activity in concentric and counter movement maximum bench press. J Hum Kinet. 2013;38:6371. PubMed ID: 24235985 doi:10.2478/hukin-2013-0046

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Lieber RL. Skeletal Muscle Structure, Function, and Plasticity. Philadelphia: Lippincott Williams & Wilkin; 2011.

  • 31.

    Alcazar J, Csapo R, Ara I, Alegre LM. On the shape of the force-velocity relationship in skeletal muscles: the linear, the hyperbolic, and the double-hyperbolic. Front Physiol. 2019;10:769. PubMed ID: 31275173 doi:10.3389/fphys.2019.00769

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    González-Badillo JJ, Rodríguez-Rosell D, Sánchez-Medina L, Gorostiaga EM, Pareja-Blanco F. Maximal intended velocity training induces greater gains in bench press performance than deliberately slower half-velocity training. Eur J Sport Sci. 2014;14(8):772781. PubMed ID: 24734902 doi:10.1080/17461391.2014.905987

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Hawley JA. Specificity of training adaptation: time for a rethink? J Physiol. 2008;586(1):12. PubMed ID: 18167367 doi:10.1113/jphysiol.2007.147397

  • 34.

    Gamble P. Implications and applications of training specificity for coaches and athletes. Strength Cond J. 2006;28(3):5458.

All Time Past Year Past 30 Days
Abstract Views 92 92 92
Full Text Views 9 9 9
PDF Downloads 8 8 8