An All-Out Test to Determine Finger Flexor Critical Force in Rock Climbers

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: The fatigue resistance of the finger flexors is known to be a key determinant of climbing performance. This study set out to establish the association between the single all-out assessment of finger flexor critical force (ff-CF) and the impulse above CF (W') on climbing performance (self-reported sport and boulder climbing ability). Methods: A total of 129 subjects completed an assessment of dominant arm ff-CF, comprised of a series of rhythmic isometric maximum voluntary contractions (CF defined as mean end-test force [in kilograms]; W' impulse above CF [in kilogram second]). Results: The ff-CF protocol resulted in the same force decay to a plateau seen in previous isometric critical torque and critical force tests. Linear regression analysis, adjusting for sex, revealed that CF percentage of body mass explained 61% of sport and 26% of bouldering performance and W' per kilogram body mass explained 7% sport and 34% bouldering performance. A combined model of CF as a percentage of body mass and W' per kilogram body mass, after adjustment for sex differences, was able to explain 66% of sport climbing and 44% of bouldering performance. Conclusions: The results illustrate the relevance of the CF threshold in describing the fatigue resistance of the finger flexors of rock climbers. Given ff-CF ability to describe a considerable proportion of variance in sport climbing and bouldering ability, the authors expect it to become a common test used by coaches for understanding exercise tolerance and for determining optimal training prescription.

Giles, Hartley, Hadley, Torr, and Randall are with the Lattice Training Ltd., Chesterfield, United Kingdom. Giles is also with the Health and Social Care Research Centre, College of Health and Social Care, University of Derby, Derby, United Kingdom. Hartley, Maslen, Taylor, and Chidley are with the Human Sciences Research Centre, University of Derby, Derby, United Kingdom. Fryer is with the School of Sport and Exercise, University of Gloucestershire, Gloucester, United Kingdom.

Giles (drdagiles@gmail.com) is corresponding author.
  • 1.

    Philippe M, Wegst D, Müller T, Raschner C, Burtscher M. Climbing-specific finger flexor performance and forearm muscle oxygenation in elite male and female sport climbers. Eur J Appl Physiol. 2012;112(8):28392847. PubMed ID: 22131087 doi:10.1007/s00421-011-2260-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Fryer S, Giles D, Palomino IG, de la O Puerta A, Romero VE. Hemodynamic and cardiorespiratory predictors of sport rock climbing performance. J Strength Cond Res. 2017;32(12):35343541. doi:10.1519/JSC.0000000000001860

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Fryer S, Stone KJ, Sveen J, et al. Differences in forearm strength, endurance, and hemodynamic kinetics between male boulderers and lead rock climbers. Eur J Sport Sci. 2017;17(9):11771183. PubMed ID: 28753391 doi:10.1080/17461391.2017.1353135

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Giles D, Romero VE, Garrido I, et al. Differences in oxygenation kinetics between the dominant and nondominant flexor digitorum profundus in rock climbers. Int J Sports Physiol Perform. 2017;12(1):137139. PubMed ID: 27145534 doi:10.1123/ijspp.2015-0651

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Baláš J, Mrskoč J, Panáčková M, Draper N. Sport-specific finger flexor strength assessment using electronic scales in sport climbers. Sports Tech. 2014;7(3–4):151158. doi:10.1080/19346182.2015.1012082

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Giles D, Chidley J, Taylor N, et al. The determination of finger flexor critical force in rock climbers. Int J Sports Physiol Perform. 2019;14(7):972979. PubMed ID: 30676817 doi:10.1123/ijspp.2018-0809

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Poole DC, Ward SA, Gardner GW, Whipp BJ. Metabolic and respiratory profile of the upper limit for prolonged exercise in man. Ergonomics. 1988;31(9):12651279. PubMed ID: 3191904 doi:10.1080/00140138808966766

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Jones AM, Wilkerson DP, DiMenna F, Fulford J, Poole DC. Muscle metabolic responses to exercise above and below the “critical power” assessed using 31P-MRS. Am J Physiol Regul Integr Comp Physiol. 2008;294(2):R585R593. PubMed ID: 18056980 doi:10.1152/ajpregu.00731.2007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Coats EM, Rossiter HB, Day JR, et al. Intensity-dependent tolerance to exercise after attaining Vo2 max in humans. J Appl Physiol. 2003;95(2):483490. PubMed ID: 12665540 doi:10.1152/japplphysiol.01142.2002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Burnley M. Estimation of critical torque using intermittent isometric maximal voluntary contractions of the quadriceps in humans. J Appl Physiol. 2009;106(3):975983. PubMed ID: 19150854 doi:10.1152/japplphysiol.91474.2008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Dekerle J, Vanhatalo A, Burnley M. Determination of critical power from a single test. Sci Sports. 2008;23(5):231238. doi:10.1016/j.scispo.2007.06.015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Vanhatalo A, Doust JH, Burnley M. Determination of critical power using a 3-min all-out cycling test. Med Sci Sports Exerc. 2007;39(3):548555. PubMed ID: 17473782 doi:10.1249/mss.0b013e31802dd3e6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Kellawan JM, Tschakovsky ME. The single-bout forearm critical force test: a new method to establish forearm aerobic metabolic exercise intensity and capacity. PLoS One. 2014;9(4):e93481. PubMed ID: 24699366 doi:10.1371/journal.pone.0093481

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Watts PB, Jensen RL, Gannon E, et al. Forearm EMG during rock climbing differs from EMG during handgrip dynamometry. Int J Exerc Sci. 2008;1(1):2.

    • Search Google Scholar
    • Export Citation
  • 15.

    Baláš J, Panáčková M, Kodejška J, Cochrane JD, Martin JA. The role of arm position during finger flexor strength measurement in sport climbers. Int J Perform Anal Sport. 2014;14(2):345354. doi:10.1080/24748668.2014.11868726

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Draper N, Giles D, Schöffl V, et al. Comparative grading scales, statistical analyses, climber descriptors and ability grouping: International Rock Climbing Research Association Position Statement. Sports Tech. 2015;8(3–4):8894. doi:10.1080/19346182.2015.1107081

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Draper N, Dickson T, Blackwell G, et al. Self-reported ability assessment in rock climbing. J Sports Sci. 2011;29(8):851858. PubMed ID: 21491325 doi:10.1080/02640414.2011.565362

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Torr O, Randall T, Knowles R, Giles D, Atkins S. Reliability and validity of a method for the assessment of sport rock climbers’ isometric finger strength [published online ahead of print March 4, 2020]. J Strength Cond Res. doi:10.1519/jsc.0000000000003548

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Baláš J, Michailov M, Giles D, et al. Active recovery of the finger flexors enhances intermittent handgrip performance in rock climbers. Eur J Sport Sci. 2016;16(7):764772. PubMed ID: 27491378 doi:10.1080/17461391.2015.1119198

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Halperin I, Aboodarda S, Basset F, Byrne J, Behm D. Pacing strategies during repeated maximal voluntary contractions. Eur J Appl Physiol. 2014;114(7):14131420. PubMed ID: 24658878 doi:10.1007/s00421-014-2872-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Fleiss J. Reliability of measurement. The design and analysis of clinical experiments. New York, NY: John Wiley & Sons; 1986.

  • 22.

    Cheng CF, Yang YS, Lin HM, Lee CL, Wang CY. Determination of critical power in trained rowers using a three-minute all-out rowing test. Eur J Appl Physiol. 2012;112(4):12511260. PubMed ID: 21769731 doi:10.1007/s00421-011-2081-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Broxterman R, Ade C, Poole DC, Harms CA, Barstow TJ. A single test for the determination of parameters of the speed–time relationship for running. Respir Physiol Neurobiol. 2013;185(2):380385. PubMed ID: 22981969 doi:10.1016/j.resp.2012.08.024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Fryer SM, Stoner L, Dickson TG, et al. Oxygen recovery kinetics in the forearm flexors of multiple ability groups of rock climbers. J Strength Cond Res. 2015;29(6):16331639. PubMed ID: 25536538 doi:10.1519/JSC.0000000000000804

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    MacLeod D, Sutherland D, Buntin L, et al. Physiological determinants of climbing-specific finger endurance and sport rock climbing performance. J Sports Sci. 2007;25(12):14331443. PubMed ID: 17786696 doi:10.1080/02640410600944550

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Saugen E, Vollestad N, Gibson H, Martin P, Edwards R. Dissociation between metabolic and contractile responses during intermittent isometric exercise in man. Exp Physiol. 1997;82(1):213226. PubMed ID: 9023519 doi:10.1113/expphysiol.1997.sp004010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Kent-Braun J, Miller R, Weiner M. Phases of metabolism during progressive exercise to fatigue in human skeletal muscle. J Appl Physiol. 1993;75(2):573580. PubMed ID: 8226454 doi:10.1152/jappl.1993.75.2.573

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Jones AM, Vanhatalo A. The ‘critical power’ concept: applications to sports performance with a focus on intermittent high-intensity exercise. Sports Med. 2017;47(suppl 1):6578. doi:10.1007/s40279-017-0688-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 20 20 20
Full Text Views 4 4 4
PDF Downloads 4 4 4