Number of Repetitions Performed Before and After Reaching Velocity Loss Thresholds: First Repetition Versus Fastest Repetition—Mean Velocity Versus Peak Velocity

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: To explore the effect of several methodological factors on the number of repetitions performed before and after reaching certain velocity loss thresholds (VLTs). Method: Fifteen resistance-trained men (bench press 1-repetition maximum = 1.25 [0.16] kg·kg−1) performed with maximum intent a total of 182 sets (77 short sets [≤12 repetitions] and 105 long sets [>12 repetitions]) leading to failure during the Smith machine bench press exercise. Fifteen percent, 30%, and 45% VLTs were calculated, considering 2 reference repetitions (first and fastest repetitions) and 2 velocity variables (mean velocity [MV] and peak velocity [PV]). Results: The number of repetitions performed before reaching all VLTs were affected by the reference repetition and velocity variable (P ≤ .001). The fastest MV and PV during the short sets (75.3%) and PV during the long sets (72.4%) were predominantly observed during the first repetition, while the fastest MV during long sets was almost equally distributed between the first (37.1%) and second repetition (40.0%). Failure occurred before reaching the VLTs more frequently using PV (4, 8, and 33 occasions for 15%, 30%, and 45% VLTs, respectively) than MV (only 1 occasion for the 45% VLT). The participants rarely produced a velocity output above a VLT once this threshold was exceeded for the first time (≈10% and 30% of occasions during the short and long sets, respectively). Conclusions: The reference repetition and velocity variable are important factors to consider when implementing VLTs during resistance training. The fastest repetition (instead of the first repetition) and MV (instead of PV) are recommended.

García-Ramos is with the Dept of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain; and the Dept of Sports Sciences and Physical Conditioning, Faculty of Education, Universidad Católica de la Santísima Concepción, Concepción, Chile. Weakley is with the School of Behavioural and Health Sciences, Australian Catholic University, Brisbane, QLD, Australia; and Carnegie Applied Rugby Research (CARR) Centre, Inst for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, United Kingdom. Janicijevic is with the Faculty of Sports Science, Ningbo University, Ningbo, China; and the University of Belgrade, Faculty of Sport and Physical Education, The Research Center, Belgrade, Serbia. Jukic is with the Sports Performance Research Inst New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand.

García-Ramos (amagr@ugr.es) is corresponding author.
  • 1.

    Ratamess NA, Alvar BA, Evetoch TK, et al. . American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2009;41(3):687708. doi:10.1249/MSS.0b013e3181915670

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Suchomel TJ, Nimphius S, Stone MH. The importance of muscular strength in athletic performance. Sports Med. 2016;46(10):14191449. doi:10.1007/s40279-016-0486-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Kraemer WJ, Ratamess NA, French DN. Resistance training for health and performance. Curr Sports Med Rep. 2002;1(3):165171. PubMed ID: 12831709 doi:10.1249/00149619-200206000-00007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    González-Badillo JJ, Rodríguez-Rosell D, Sánchez-Medina L, Gorostiaga EM, Pareja-Blanco F. Maximal intended velocity training induces greater gains in bench press performance than deliberately slower half-velocity training. Eur J Sport Sci. 2014;14(8):772781. PubMed ID: 24734902 doi:10.1080/17461391.2014.905987

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Mangine GT, Hoffman JR, Gonzalez AM, et al. . The effect of training volume and intensity on improvements in muscular strength and size in resistance-trained men. Physiol Rep. 2015;3(8):e12472. PubMed ID: 26272733 doi:10.14814/phy2.12472

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Weakley J, Mann B, Banyard H, McLaren S, Scott T, Garcia-Ramos A. Velocity-based training: from theory to application. Strength Cond J. 2020. doi:10.1519/SSC.0000000000000560

    • Search Google Scholar
    • Export Citation
  • 7.

    Benavides-Ubric A, Díez-Fernández DM, Rodríguez-Pérez MA, Ortega-Becerra M, Pareja-Blanco F. Analysis of the load–velocity relationship in deadlift exercise. J Sports Sci Med. 2020;19:452459.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    García-Ramos A, Pestaña-Melero FL, Pérez-Castilla A, Rojas FJ, Haff GG. Mean velocity vs. mean propulsive velocity vs. peak velocity: which variable determines bench press relative load with higher reliability? J Strength Cond Res. 2018;32(5):12731279. doi:10.1519/JSC.0000000000001998

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    García-Ramos A, Haff GG, Pestaña-Melero FL, et al. . Feasibility of the 2-point method for determining the 1-repetition maximum in the bench press exercise. Int J Sports Physiol Perform. 2018;13(4):474481. doi:10.1123/ijspp.2017-0374

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Pestaña-Melero F, Haff GG, Rojas FJ, Pérez-Castilla A, García-Ramos A. Reliability of the load–velocity relationship obtained through linear and polynomial regression models to predict the one-repetition maximum load. J Appl Biomech. 2018;34(3):184190. PubMed ID: 29252060 doi:10.1123/jab.2017-0266

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Jukic I, García-Ramos A, Malecek J, Omcirk D, Tufano JJ. Validity of load–velocity relationship to predict 1RM during deadlift performed with and without lifting straps: the accuracy of six prediction models [published online ahead of print April 13, 2020]. J Strength Cond Res. doi:10.1519/jsc.0000000000003596

    • Search Google Scholar
    • Export Citation
  • 12.

    García-Ramos A, Ulloa-Díaz D, Barboza-González P, et al. . Assessment of the load–velocity profile in the free-weight prone bench pull exercise through different velocity variables and regression models. PLoS One. 2019;14(2):e0212085. doi:10.1371/journal.pone.0212085

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Haff G, Triplett N. Essentials of Strength Training and Conditioning. 4th ed. Champaign, IL: Human Kinetics; 2016.

  • 14.

    Dankel SJ, Jessee MB, Mattocks KT, et al. . Training to fatigue: the answer for standardization when assessing muscle hypertrophy? Sports Med. 2017;47(6):10211027. PubMed ID: 27677915 doi:10.1007/s40279-016-0633-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Weakley J, McLaren S, Ramirez-Lopez C, et al. . Application of velocity loss thresholds during free-weight resistance training: responses and reproducibility of perceptual, metabolic, and neuromuscular outcomes. J Sports Sci. 2019;38(5):477485. doi:10.1080/02640414.2019.1706831

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Pérez-Castilla A, García-Ramos A, Padial P, Morales-Artacho A, Feriche B. Effect of different velocity loss thresholds during a power-oriented resistance training program on the mechanical capacities of lower-body muscles. J Sports Sci. 2018;36(12):13311339. PubMed ID: 28892463 doi:10.1080/02640414.2017.1376900

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    González-Badillo J, Yañez-García J, Mora-Custodio R, Rodríguez-Rosell D. Velocity loss as a variable for monitoring resistance exercise. Int J Sports Med. 2017;38(3):217225. PubMed ID: 28192832 doi:10.1055/s-0042-120324

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Morán-Navarro R, Martínez-Cava A, Sánchez-Medina L, Mora-Rodríguez R, González-Badillo JJ, Pallarés JG. Movement velocity as a measure of level of effort during resistance exercise. J Strength Cond Res. 2019;33(6):14961504. doi:10.1519/JSC.0000000000002017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    García-Ramos A, Torrejón A, Feriche B, et al. . Prediction of the maximum number of repetitions and repetitions in reserve from barbell velocity. Int J Sports Physiol Perform. 2018;13(3):353359. doi:10.1123/ijspp.2017-0302

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Pareja-Blanco F, Rodríguez-Rosell D, Sánchez-Medina L, et al. . Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scand J Med Sci Sport. 2017;27(7):724735. doi:10.1111/sms.12678

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Pareja-Blanco F, Sánchez-Medina L, Suárez-Arrones L, González-Badillo JJ. Effects of velocity loss during resistance training on performance in professional soccer players. Int J Sports Physiol Perform. 2017;12(4):512519. doi:10.1123/ijspp.2016-0170

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    García-Ramos A, Padial P, Haff G, et al. . Effect of different interrepetition rest periods on barbell velocity loss during the ballistic bench press exercise. J Strength Cond Res. 2015;29(9):23882396. doi:10.1519/JSC.0000000000000891

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Jukic I, Tufano J. Rest redistribution functions as a free and ad-hoc equivalent to commonly used velocity-based training thresholds during clean pulls at different loads. J Hum Kinet. 2019;68(1):516. PubMed ID: 31531129 doi:10.2478/hukin-2019-0052

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Sanchez-Medina L, Perez CE, Gonzalez-Badillo JJ. Importance of the propulsive phase in strength assessment. Int J Sports Med. 2010;31(2):123129. PubMed ID: 20222005 doi:10.1055/s-0029-1242815

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Sánchez-Moreno M, Rodríguez-Rosell D, Pareja-Blanco F, Mora-Custodio R, González-Badillo JJ. Movement velocity as indicator of relative intensity and level of effort attained during the set in pull-up exercise. Int J Sports Physiol Perform. 2017;12(10):13781384. doi:10.1123/ijspp.2016-0791

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Rodríguez-Rosell D, Yáñez-García JM, Sánchez-Medina L, Mora-Custodio R, González-Badillo JJ. Relationship between velocity loss and repetitions in reserve in the bench press and back squat exercises. J Strength Cond Res. 2020;34(9):25372547. doi:10.1519/jsc.0000000000002881

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Miranda H, Fleck SJ, Simão R, Barreto AC, Dantas EHM, Novaes J. Effect of two different rest period lengths on the number of repetitions performed during resistance training. J Strength Cond Res. 2007;21(4):10321036. PubMed ID: 18076244

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Ebben WP, Carroll RM, Simenz CJ. Strength and conditioning practices of National Hockey League strength and conditioning coaches. J Strength Cond Res. 2004;18(4):889897. PubMed ID: 15574099

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Ebben WP, Blackard DO. Strength and conditioning practices of National Football League strength and conditioning coaches. J Strength Cond Res. 2001;15(1):4858. PubMed ID: 11708706

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Perez-Castilla A, Piepoli A, Delgado-García G, Garrido-Blanca G, Garcia-Ramos A. Reliability and concurrent validity of seven commercially available devices for the assessment of movement velocity at different intensities during the bench press. J Strength Cond Res. 2020;33(5):12581265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Weakley J, Ramirez-Lopez C, McLaren S, et al. . The effects of 10%, 20%, and 30% velocity loss thresholds on kinetic, kinematic, and repetition characteristics during the barbell back squat. Int J Sports Physiol Perform. 2020;15(2):180188. doi:10.1123/ijspp.2018-1008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Weakley J, Chalkley D, Johnston R, et al. . Criterion validity, and interunit and between-day reliability of the FLEX for measuring barbell velocity during commonly used resistance training exercises. J Strength Cond Res. 2020;34(6):15191524. PubMed ID: 32459410 doi:10.1519/JSC.0000000000003592

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Pérez-Castilla A, Piepoli A, Garrido-Blanca G, Delgado-García G, Balsalobre-Fernández C, García-Ramos A. Precision of 7 commercially available devices for predicting the bench press 1-repetition maximum from the individual load-velocity relationship. Int J Sports Physiol Perform. 2019;14(10):14421446. doi:10.1123/ijspp.2018-0801

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 268 268 165
Full Text Views 17 17 4
PDF Downloads 16 16 4