Fitness Determinants of Repeated High-Intensity Effort Ability in Elite Rugby Union Players

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: To investigate the relationship between physical fitness and repeated high-intensity effort (RHIE) ability in elite rugby union players, depending on playing position. Method: Thirty-nine players underwent a fitness testing battery composed of a body composition assessment, upper-body strength (1-repetition maximum bench press and 1-repetition maximum bench row), lower-body strength (6-repetition maximum back squat), and power (countermovement jump, countermovement jump with arms, and 20-m sprint), as well as aerobic fitness (Bronco test) and RHIE tests over a 1-week period. Pearson linear correlations were used to quantify relationships between fitness tests and the RHIE performance outcomes (total sprint time [TST] and percentage decrement [%D]). Thereafter, a stepwise multiple regression model was used to verify the influence of physical fitness measures on RHIE ability. Results: TST was strongly to very strongly associated to body fat (BF, r = .82, P < .01), the 20-m sprint (r = .86, P < .01), countermovement jump (r = −.72, P < .01), and Bronco test (r = .90, P < .01). These fitness outcomes were related to %D, with moderate to strong associations (.82 > ∣r∣ > .54, P < .01). By playing position, similar associations were observed in forwards, but RHIE ability was only related to the 20-m sprint in backs (r = .53, P < .05). The RHIE performance model equations were TST = 13.69 + 0.01 × BF + 0.08 × Bronco + 10.20 × 20 m and %D = −14.34 + 0.11 × BF +0.18 × Bronco − 9.92 × 20 m. These models explain 88.8% and 68.2% of the variance, respectively. Conclusion: Body composition, lower-body power, and aerobic fitness were highly related with RHIE ability. However, backs expressed a different profile than forwards, suggesting that further research with larger sample sizes is needed to better understand the fitness determinants of backs’ RHIE ability.

Vachon, Berryman, and Bosquet are with the Lab MOVE (EA6314), Faculty of sport sciences, University of Poitiers, Poitiers cedex 9, France. Vachon and Paquet are with the Stade Rochelais Rugby, La Rochelle, France. Berryman is also with the Dépt des Sciences de l’activité physique, Université du Québec à Montréal, Montréal, QC, Canada; Inst national du sport du Québec, Montréal, QC, Canada; and the Dept of Sports Studies, Bishop’s University, Sherbrooke, QC, Canada. Mujika is with the Dept of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Spain; and Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile. Bosquet is with the Dept of Kinesiology, University of Montreal, Montreal, QC, Canada.

Vachon (adrien.vachon@univ-poitiers.fr) is corresponding author.
  • 1.

    Duthie G, Pyne D, Hooper S. Applied physiology and game analysis of rugby union. Sports Med. 2003;33(13):973991. PubMed ID: 14606925 doi:10.2165/00007256-200333130-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Johnston RD, Gabbett TJ. Repeated-sprint and effort ability in rugby league players. J Strength Cond Res. 2011;25(10):27892795. PubMed ID: 21912282 doi:10.1519/JSC.0b013e31820f5023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Austin D, Gabbett T, Jenkins D. Repeated high-intensity exercise in professional rugby union. J Sports Sci. 2011;29(10):11051112. PubMed ID: 21756130 doi:10.1080/02640414.2011.582508

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Black GM, Gabbett TJ. Repeated high-intensity-effort activity in elite and semielite rugby league match play. Int J Sports Physiol Perform. 2015;10(6):711717. PubMed ID: 25055001 doi:10.1123/ijspp.2014-0081

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Austin DJ, Gabbett TJ, Jenkins DJ. Repeated high-intensity exercise in a professional rugby league. J Strength Cond Res. 2011;25(7):18981904. PubMed ID: 21610518 doi:10.1519/JSC.0b013e3181e83a5b

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    King T, Jenkins D, Gabbett T. A time–motion analysis of professional rugby league match-play. J Sports Sci. 2009;27(3):213219. PubMed ID: 19184713 doi:10.1080/02640410802538168

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Vachon A, Berryman N, Mujika I, Paquet J-B, Monnet T, Bosquet L. Reliability of a repeated high-intensity effort test for elite rugby union players. Sports. 2020;8(5):72. doi:10.3390/sports8050072

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Higham DG, Pyne DB, Anson JM, Eddy A. Physiological, anthropometric, and performance characteristics of rugby sevens players. Int J Sports Physiol Perform. 2013;8(1):1927. PubMed ID: 22868376 doi:10.1123/ijspp.8.1.19

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Gibson N, Currie J, Johnston R, Hill J. Relationship between measures of aerobic fitness, speed and repeated sprint ability in full and part time youth soccer players. J Sports Med Phys Fitness. 2013;53(1):916. PubMed ID: 23470906

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Austin DJ, Gabbett TJ, Jenkins DG. Reliability and sensitivity of a repeated high-intensity exercise performance test for rugby league and rugby union. J Strength Cond Res. 2013;27(4):11281135. PubMed ID: 22652919 doi:10.1519/JSC.0b013e31825fe941

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Gabbett TJ, Wheeler AJ. Predictors of repeated high-intensity-effort ability in rugby league players. Int J Sports Physiol Perform. 2015;10(6):718724. PubMed ID: 25365525 doi:10.1123/ijspp.2014-0127

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Durnin JV, Womersley J. Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 Years. Br J Nutr. 1974;32(01):7797. doi:10.1079/BJN19740060

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Claudino JG, Cronin J, Mezêncio B, et al. . The countermovement jump to monitor neuromuscular status: a meta-analysis. J Sci Med Sport. 2017;20(4):397402. PubMed ID: 27663764 doi:10.1016/j.jsams.2016.08.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Urquhart BG, Moir GL, Graham SM, Connaboy C. Reliability of 1RM split-squat performance and the efficacy of assessing both bilateral squat and split-squat 1RM in a single session for non-resistance-trained recreationally active men. J Strength Cond Res. 2015;29(7):19911998. PubMed ID: 26102262 doi:10.1519/JSC.0000000000000824

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Cohen J. Statistical Power for the Behavioral Sciences. Hillside, NJ: Lawrence Erlbaum Associates; 1988.

  • 16.

    Munro B. Statistical Methods for Health Care Research. Vol. 1. Philadelphia, PA: Lippincott Williams & Wilkins; 2005.

  • 17.

    Fernández-López JR, Cámara J, Maldonado S, Rosique-Gracia J. The effect of morphological and functional variables on ranking position of professional junior Basque surfers. Eur J Sport Sci. 2013;13(5):461467. PubMed ID: 24050462 doi:10.1080/17461391.2012.749948

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Faul F, Erdfelder E, Buchner A, Lang AG. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Methods. 2009;41(4):11491160. PubMed ID: 19897823 doi:10.3758/BRM.41.4.1149

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Argus CK, Gill ND, Keogh JW, Hopkins WG, Beaven CM. Changes in strength, power, and steroid hormones during a professional rugby union competition. J Strength Cond Res. 2009;23(5):15831592. PubMed ID: 19620903 doi:10.1519/JSC.0b013e3181a392d9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Lombard WP, Durandt JJ, Masimla H, Green M, Lambert MI. Changes in body size and physical characteristics of south african under-20 rugby union players over a 13-year period. J Strength Cond Res. 2015;29(4):980988. PubMed ID: 25387267 doi:10.1519/JSC.0000000000000724

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Crewther BT, Lowe T, Weatherby RP, Gill N, Keogh J. Neuromuscular performance of elite rugby union players and relationships with salivary hormones. J Strength Cond Res. 2009;23(7):20462053. PubMed ID: 19855329 doi:10.1519/JSC.0b013e3181b73c19

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Miles C, Mayo B, Beaven CM, et al. . Resistance training in the heat improves strength in professional rugby athletes. Sci Med Footb. 2019;3(3):198204. doi:10.1080/24733938.2019.1566764

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Appleby B, Newton RU, Cormie P. Changes in strength over a 2-year period in professional rugby union players. J Strength Cond Res. 2012;26(9):25382546. PubMed ID: 22076095 doi:10.1519/JSC.0b013e31823f8b86

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Durguerian A, Piscione J, Mathieu B, Lacome M. Integrating strength and power development in the long-term athletic development of young rugby union players: methodological and practical applications. Strength Cond J. 2019;41(4):1833. doi:10.1519/SSC.0000000000000452

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Girard O, Mendez-Villanueva A, Bishop D. Repeated-sprint ability—Part I: factors contributing to fatigue. Sports Med. 2011;41(8):673694. PubMed ID: 21780851 doi:10.2165/11590550-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Duthie GM. A framework for the physical development of elite rugby union players. Int J Sports Physiol Perform. 2006;1(1):213. PubMed ID: 19114733 doi:10.1123/ijspp.1.1.2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Suárez-Arrones LJ, Portillo LJ, González-Ravé JM, Muñoz VE, Sanchez F. Match running performance in Spanish elite male rugby union using global positioning system. Isokinet Exerc Sci. 2012;20(2):7783. doi:10.3233/IES-2012-0444

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Mendez-Villanueva A, Hamer P, Bishop D. Fatigue in repeated-sprint exercise is related to muscle power factors and reduced neuromuscular activity. Eur J Appl Physiol. 2008;103(4):411419. PubMed ID: 18368419 doi:10.1007/s00421-008-0723-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Gaitanos GC, Williams C, Boobis LH, Brooks S. Human muscle metabolism during intermittent maximal exercise. J Appl Physiol. 1993;75(2):712719. PubMed ID: 8226473 doi:10.1152/jappl.1993.75.2.712

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Raglin JS. Psychological Factors in sport performance: the mental health model revisited. Sports Med. 2001;31(12):875890. PubMed ID: 11665914 doi:10.2165/00007256-200131120-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 48 48 48
Full Text Views 3 3 3
PDF Downloads 7 7 7