Improved Strength and Recovery After Velocity-Based Training: A Randomized Controlled Trial

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Steffen Held
Search for other papers by Steffen Held in
Current site
Google Scholar
PubMed
Close
,
Anne Hecksteden
Search for other papers by Anne Hecksteden in
Current site
Google Scholar
PubMed
Close
,
Tim Meyer
Search for other papers by Tim Meyer in
Current site
Google Scholar
PubMed
Close
, and
Lars Donath
Search for other papers by Lars Donath in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: The present intervention study examined the effects of intensity-matched velocity-based strength training with a 10% velocity loss (VL10) versus traditional 1-repetition maximum (1RM) based resistance training to failure (TRF) on 1RM and maximal oxygen uptake (V˙O2max) in a concurrent training setting. Methods: Using the minimization method, 21 highly trained rowers (4 females and 17 males; 19.6 [2.1] y, 1.83 [0.07] m, 74.6 [8.8] kg, V˙O2max:64.9[8.5]mL·kg1·min1) were either assigned to VL10 or TRF. In addition to rowing endurance training (about 75 min·d1), both groups performed strength training (5 exercises, 80% 1RM, 4 sets, 2–3 min interset recovery, 2 times/week) over 8 weeks. Squat, deadlift, bench row, and bench press 1RM and V˙O2max rowing-ergometer ramp tests were completed. Overall recovery and overall stress were monitored every evening using the Short Recovery and Stress Scale. Results: Large and significant group × time interactions (P < .03, ηp2>.23, standard mean differences [SMD] > 0.65) in favor of VL10 (averaged +18.0% [11.3%]) were observed for squat, bench row, and bench press 1RM compared with TRF (averaged +8.0% [2.9%]). V˙O2max revealed no interaction effects (P = .55, ηp2=.01, standard mean difference < .23) but large time effects (P < .05, ηp2>.27). Significant group × time interactions (P = .001, ηp2>.54, SMD > |0.525|) in favor of VL10 were also observed for overall recovery and overall stress 24 and 48 hours after strength training. Conclusions: VL10 serves as a promising means to improve strength capacity at lower repetitions and stress levels in highly trained athletes. Future research should investigate the interference effects of VL10 in strength endurance sports and its effects when increasing weekly VL10 sessions within one macrocycle.

Held and Donath are with the Dept of Intervention Research in Exercise Training, German Sport University Cologne, Cologne, Germany. Hecksteden and Meyer are with the Inst of Sports and Preventive Medicine, Saarland University, Saarbrücken, Germany.

Held (s.held@dshs-koeln.de) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Ingham S, Whyte G, Jones K, Nevill A. Determinants of 2,000 m rowing ergometer performance in elite rowers. Eur J Appl Physiol. 2002;88(3):243246. PubMed ID: 12458367 doi:10.1007/s00421-002-0699-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Lawton TW, Cronin JB, McGuigan MR. Strength testing and training of rowers. Sport Med. 2011;41(5):413432. doi:10.2165/11588540-000000000-00000

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    García-Pallarés J, Izquierdo M. Strategies to optimize concurrent training of strength and aerobic fitness for rowing and canoeing. Sports Med. 2011;41(4):329343. PubMed ID: 21425890 doi:10.2165/11539690-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Wilson JM, Marin PJ, Rhea MR, Wilson SM, Loenneke JP, Anderson JC. Concurrent training: a meta-analysis examining interference of aerobic and resistance exercises. J Strength Cond Res. 2012;26(8):22932307. PubMed ID: 22002517 doi:10.1519/JSC.0b013e31823a3e2d

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Pareja-Blanco F, Alcazar J, Sánchez-Valdepeñas J, et al. Velocity loss as a critical variable determining the adaptations to strength training. Med Sci Sports Exerc. 2020;52(8):17521762 . doi:10.1249/MSS.0000000000002295

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    González-Badillo JJ, Sánchez-Medina L. Movement velocity as a measure of loading intensity in resistance training. Int J Sports Med. 2010;31(05):347352. PubMed ID: 20180176 doi:10.1055/s-0030-1248333

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Sánchez-Medina L., González-Badillo JJ. Velocity loss as an indicator of neuromuscular fatigue during resistance training. Med Sci Sports Exerc. 2011;43(9):17251734. PubMed ID: 21311352 doi:10.1249/MSS.0b013e318213f880

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Rodríguez-Rosell D, Yáñez-García JM, Sánchez-Medina L, Mora-Custodio R, González-Badillo JJ. Relationship between velocity loss and repetitions in reserve in the bench press and back squat exercises. J Strength Cond Res. 2020;34(9):25372547. doi:10.1519/JSC.0000000000002881

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Pareja-Blanco F, Rodríguez-Rosell D, Sánchez-Medina L, et al. Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scand J Med Sci Sports 2017;27(7):724735. PubMed ID: 27038416 doi:10.1111/sms.12678

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Padulo J, Mignogna P, Mignardi S, Tonni F, D’Ottavio S. Effect of different pushing speeds on bench press. Int J Sports Med. 2012;33(05):376380. PubMed ID: 22318559 doi:10.1055/s-0031-1299702

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Izquierdo-Gabarren M, De Txabarri RG, Pallarés JG, et al. Concurrent endurance and strength training not to failure optimizes performance gains. Med Sci Sport Exerc. 2009;42:1. doi:10.1249/MSS.0b013e3181c67eec

    • Search Google Scholar
    • Export Citation
  • 12.

    Morán-Navarro R, et al. Time course of recovery following resistance training leading or not to failure. Eur J Appl Physiol. 2017;117(12):23872399. PubMed ID: 28965198 doi:10.1007/s00421-017-3725-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Nässi A, Ferrauti A, Meyer T, Pfeiffer M, Kellmann M. Development of two short measures for recovery and stress in sport. Eur J Sport Sci. 2017;17(7):894903. PubMed ID: 28463598 doi:10.1080/17461391.2017.1318180

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Harriss D, Atkinson G. Ethical standards in sport and exercise science research: 2016 update. Int J Sports Med. 2015;36(14):11211124. PubMed ID: 26671845 doi:10.1055/s-0035-1565186

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Scott N, McPherson G, Ramsay C, Campbell M. The method of minimization for allocation to clinical trials. a review. Control Clin Trials. 2002;23(6):662674. PubMed ID: 12505244 doi:10.1016/S0197-2456(02)00242-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Schwarzrock M, Mattes K, Grahn M, et al. Trainingsmethodische Grundkonzeption 2017–2020. Hannover, Germany: Deutscher Ruderverband; 2017.

    • Search Google Scholar
    • Export Citation
  • 17.

    Martínez-Cava A, Hernández-Belmonte A, Courel-Ibáñez J, Morán-Navarro R, González-Badillo JJ, Pallarés JG. Reliability of technologies to measure the barbell velocity: implications for monitoring resistance training. PLoS One. 2020;15(6):e0232465. PubMed ID: 32520952 doi:10.1371/journal.pone.0232465

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    McCurdy K, Langford GA, Cline AL, Doscher M, Hoff R. The reliability of 1- and 3RM tests of unilateral strength in trained and untrained men and women. J Sport Sci Med. 2004;3(3):190196.

    • Search Google Scholar
    • Export Citation
  • 19.

    Lombardi V. Beginning Weight Training. Dubuque, IA: Brown & Benchmark; 1989.

  • 20.

    García-Ramos A, Barboza-González P, Ulloa-Díaz D, et al. Reliability and validity of different methods of estimating the one-repetition maximum during the free-weight prone bench pull exercise. J Sports Sci. 2019;37(19):22052212. PubMed ID: 31164044 doi:10.1080/02640414.2019.1626071

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Treff G, Winkert K, Machus K, Steinacker JM. Computer-aided stroke-by-stroke visualization of actual and target power allows for continuously increasing ramp tests on wind-braked rowing ergometers. Int J Sports Physiol Perform. 2018;13(6):729734. PubMed ID: 29035587 doi:10.1123/ijspp.2016-0716

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Macfarlane DJ, Wong P. Validity, reliability and stability of the portable Cortex Metamax 3B gas analysis system. Eur J Appl Physiol. 2012;112:25392547.

  • 23.

    Midgley AW, McNaughton LR, Polman R, Marchant D. Criteria for determination of maximal oxygen uptake. Sport Med. 2007;37(12):10191028. doi:10.2165/00007256-200737120-00002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Seiler S. What is best practice for training intensity and duration distribution in endurance athletes? Int J Sports Physiol Perform. 2010;5(3):276291. PubMed ID: 20861519 doi:10.1123/ijspp.5.3.276

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Dickhuth H-H, Yin L, Niess A, Röcker K, Mayer F, Heitkamp H-C, Horstmann T. Ventilatory, lactate-derived and catecholamine thresholds during incremental treadmill running: relationship and reproducibility. Int J Sports Med. 1999;20(2):122127. doi:10.1055/s-2007-971105

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Foster C, Florhaug JA, Franklin J, et al. A new approach to monitoring exercise training. J Strength Cond Res. 2001;15(1):109115.

  • 27.

    Vickers AJ, Altman DG. Statistics Notes: analysing controlled trials with baseline and follow up measurements. BMJ. 2001;323(7321):11231124. PubMed ID: 11701584 doi:10.1136/bmj.323.7321.1123

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. Hillside, NJ: Lawrence Erlbaum Associates; 1988.

  • 29.

    Held S, Behringer M, Donath L. Low intensity rowing with blood flow restriction over 5 weeks increases V ˙ O 2 max in elite rowers: a randomized controlled trial. J Sci Med Sport 2020;23(3):304308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Doma K, Deakin GB, Schumann M, Bentley DJ. Training considerations for optimising endurance development: an alternate concurrent training perspective. Sports Med. 2019;49(5):669682. PubMed ID: 30847824 doi:10.1007/s40279-019-01072-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 7041 3719 226
Full Text Views 272 111 7
PDF Downloads 355 144 11