The Influence of Different Training Load Quantification Methods on the Fitness-Fatigue Model

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Kobe M. Vermeire
Search for other papers by Kobe M. Vermeire in
Current site
Google Scholar
PubMed
Close
,
Freek Van de Casteele
Search for other papers by Freek Van de Casteele in
Current site
Google Scholar
PubMed
Close
,
Maxim Gosseries
Search for other papers by Maxim Gosseries in
Current site
Google Scholar
PubMed
Close
,
Jan G. Bourgois
Search for other papers by Jan G. Bourgois in
Current site
Google Scholar
PubMed
Close
,
Michael Ghijs
Search for other papers by Michael Ghijs in
Current site
Google Scholar
PubMed
Close
, and
Jan Boone
Search for other papers by Jan Boone in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: Numerous methods exist to quantify training load (TL). However, the relationship with performance is not fully understood. Therefore the purpose of this study was to investigate the influence of the existing TL quantification methods on performance modeling and the outcome parameters of the fitness-fatigue model. Methods: During a period of 8 weeks, 9 subjects performed 3 interval training sessions per week. Performance was monitored weekly by means of a 3-km time trial on a cycle ergometer. After this training period, subjects stopped training for 3 weeks but still performed a weekly time trial. For all training sessions, Banister training impulse (TRIMP), Lucia TRIMP, Edwards TRIMP, training stress score, and session rating of perceived exertion were calculated. The fitness-fatigue model was fitted for all subjects and for all TL methods. Results: The error in relating TL to performance was similar for all methods (Banister TRIMP: 618 [422], Lucia TRIMP: 625 [436], Edwards TRIMP: 643 [465], training stress score: 639 [448], session rating of perceived exertion: 558 [395], and kilojoules: 596 [505]). However, the TL methods evolved differently over time, which was reflected in the differences between the methods in the calculation of the day before performance on which training has the biggest positive influence (range of 19.6 d). Conclusions: The authors concluded that TL methods cannot be used interchangeably because they evolve differently.

Vermeire, Van de Casteele, Gosseries, Bourgois, and Boone are with the Dept of Movement and Sports Sciences, and Ghijs, BIOMATH, the Dept of Data Analysis and Mathematical Modeling, Ghent University, Ghent, Belgium. Bourgois and Boone are also with the Center of Sports Medicine, Ghent University Hospital, Ghent, Belgium.

Boone (Jan.Boone@UGent.be) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Mujika I, Busso T, Lacoste L, Barale F, Geyssant A, Chatard JC. Modeled responses to training and taper in competitive swimmers. Med Sci Sports Exerc. 1996;28(2):251258. PubMed ID: 8775162 doi:10.1097/00005768-199602000-00015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Foster C, Rodriguez-Marroyo JA, de Koning JJ. Monitoring training loads: the past, the present and the future. Int J Sports Physiol Perform. 2017;12(suppl 2):S22S28. PubMed ID: 28253038 doi:10.1123/IJSPP.2016-0388

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Impellizzeri FM, Marcora SM, Coutts AJ. Internal and external training load: 15 years on. Int J Sports Physiol Perform. 2019;14(2):270273. PubMed ID: 30614348 doi:10.1123/ijspp.2018-0935

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Sanders D, Abt G, Hesselink MKC, Myers T, Akubat I. Methods of monitoring training load and their relationships to changes in fitness and performance in competitive road cyclists. Int J Sports Phyisol Perform. 2017;12(5):668675. doi:10.1123/ijspp.2016-0454

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Vermeire KM, Vandewiele G, Caen K, Lievens M, Bourgois JG, Boone J. Training progression in recreational cyclists: no linear dose-response relationship with training load [published online ahead of print August 29, 2019]. J Strength Cond Res. doi:10.1519/JSC.0000000000003340

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Clarke DC, Skiba PF. Rationale and resources for teaching the mathematical modeling of athletic training and performance. Adv Physiol Educ. 2013;37(2):134152. PubMed ID: 23728131 doi:10.1152/advan.00078.2011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Calvert TW, Banister EW, Savage MV, Bach T. A systems model of the effects of training on physical performance. IEEE Trans Syst Man Cybern SMC. 1975;SMC-6(2):94102. doi:10.1109/TSMC.1976.5409179

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Morton RH, Fitz-Clarke JR, Banister EW. Modeling human performance in running. J Appl Physiol. 1985;69(3):11711177. doi:10.1152/jappl.1990.69.3.1171

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Busso T, Candau R, Lacour JR. Fatigue and fitness modelled from the effects of training on performance. Eur J Appl Physiol. 1994;69(1):5054. doi:10.1007/BF00867927

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Fitz-Clarke JR, Morton RH, Banister EW. Optimizing athletic performance by influence curves. J Appl Physiol. 1991;71(3):11511158. PubMed ID: 1757312 doi:10.1152/jappl.1991.71.3.1151

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Hellard P, Avalos M, Lacoste L, Barale F, Chatard JC, Millet GP. Assessing the limitations of the Banister model in monitoring training. J Sports Sci. 2006;24(5):509520. PubMed ID: 16608765 doi:10.1080/02640410500244697

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Hellard P, Avalos M, Millet G, Lacoste L, Barale F, Chatard JC. Modeling the residual effects and threshold saturation of training: a case study of Olympic swimmers. J Strenth Cond Res. 2005;19:6775. PubMed ID: 15705048 doi:10.1519/14853.1

    • Search Google Scholar
    • Export Citation
  • 13.

    Wood RE, Hayter S, Rowbottom D, Stewart I. Applying a mathematical model to training adaptation in a distance runner. Eur J Appl Physiol. 2005;94(3):310316. PubMed ID: 15765236 doi:10.1007/s00421-005-1319-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Busso T, Benoit H, Bonnefoy R, Feasson L, Lacour JR. Effects of training frequency on the dynamics of performance response to a single training bout. J Appl Physiol. 2002;92(2):572580. PubMed ID: 11796666 doi:10.1152/japplphysiol.00429.2001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Busso T, Carasso C, Lacour JR. Adequacy of a systems structure in the modelling of training effects on performance. J Appl Physiol. 1991;71(5):20442049. PubMed ID: 1761506 doi:10.1152/jappl.1991.71.5.2044

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Busso T, Denis C, Bonnefoy R, Geyssant A, Lacour JR. Modeling of adaptations to physical training using a recursive least squares algorithm. J Appl Physiol. 1997;82(5):16851693. PubMed ID: 9134920 doi:10.1152/jappl.1997.82.5.1685

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Millet GP, Candau RB, Barbier B, Busso T, Rouillon JD, Chatard JC. Modeling the transfers of training effects on performance in elite triathletes. Int J Sports Med. 2002;23(1):5563. PubMed ID: 11774068 doi:10.1055/s-2002-19276

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Taha T, Thomas SG. Systems modelling of the relationship between training and performance. Sports Med. 2003;33(14):10611073. PubMed ID: 14599233 doi:10.2165/00007256-200333140-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Caen K, Vermeire K, Bourgois JG, Boone J. Exercise thresholds on trial: are they really equivalent? Med Sci Sports Exerc. 2018;50(6):12771284. PubMed ID: 29315165 doi:10.1249/MSS.0000000000001547

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Boone J, Bourgois J. The oxygen uptake response to incremental ramp exercise: methodological and physiological issues. Sports Med. 2012;42(6):511526. PubMed ID: 22571502 doi:10.2165/11599690-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Banister EW. Modelling elite athletic performance. In: Macdougall JD, Wenger HA, Green HJ, eds. Physiological Testing of Elite Athletes. Champaign, IL: Human Kinetics; 1991:403422.

    • Search Google Scholar
    • Export Citation
  • 22.

    Edwards S. High performance training and racing. In: Edwards S, ed. The Heart Rate Monitor Book. Sacramento, CA: Feet Fleet Press, 1993:113123.

    • Search Google Scholar
    • Export Citation
  • 23.

    Lucia A, Hoyos J, Santalla A, Earnest C, Chicharro JL. Tour de France versus Vuelta a España: which is harder? Med Sci Sports Exerc. 2003;35(5):872878. PubMed ID: 12750600

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Foster C, Daines E, Hector L, Snyder AC, Welsh R. Athletic performance in relation to training load. Wis Med J. 1996;95(6):370374. PubMed ID: 8693756

  • 25.

    Hunter A, Coggan A. Training and Racing with a Power Meter. 2nd ed. Boulder, CO: Velopress; 2010.

  • 26.

    Kennedy J, Eberhart R. Particle swarm optimization. Poster presented at: Proceedings of ICNN’95—International Conference on Neural Networks, Perth, WA, Australia (November 27 to December 1, 1995). Accessed July 9, 2020. 10.1109/ICNN.1995.488968

  • 27.

    Jensen L, Bangsbo J, Hellsten Y. Effect of high intensity training on capillarization and presence of angiogenic factors in human skeletal muscle. J Physiol. 2004;557(2):571582. doi:10.1113/jphysiol.2003.057711

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Convertino VA. Blood volume response to physical activity and inactivity. Am J Med Sci. 2007;334(1):7279. PubMed ID: 17630597 doi:10.1097/MAJ.0b013e318063c6e4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Van Erp T, Foster C, De Koning JJ. Relationship between various training-load measures in elite cyclists during training, road races, and time trials. Int J Sports Physiol Perform. 2019;14(4):493500. PubMed ID: 30300025 doi:10.1123/ijspp.2017-0722

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Wallace LK, Slattery KM, Coutts AJ. A comparison of methods for quantifying training load: relationships between modelled and actual training responses. Eur J Appl Physiol. 2014;114(1):1120. PubMed ID: 24104194 doi:10.1007/s00421-013-2745-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Mitchell LJG, Rattray B, Fowlie J, Saunders PU, Pyne DB. The impact of different training load quantification and modelling methodologies on performance predictions in elite swimmers. Eur J Sport Sci. 2020;20(10):1329–1338. doi:10.1080/17461391.2020.1719211

    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3189 1773 132
Full Text Views 178 72 8
PDF Downloads 237 106 11