Comparison of Physiological Responses and Muscle Activity During Incremental and Decremental Cycling Exercise

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $114.00

1 year online subscription

USD  $152.00

Student 2 year online subscription

USD  $217.00

2 year online subscription

USD  $289.00

Objective: To investigate whether a cycling test based on decremental loads (DEC) could elicit higher maximal oxygen uptake (V˙O2max) values compared with an incremental test (INC). Design: Nineteen well-trained individuals performed an INC and a DEC test on a single day, in randomized order. Methods: During INC, the load was increased by 20 W·min−1 until task failure. During DEC, the load started at 20 W higher than the peak load achieved during INC (familiarization trial) and was progressively decreased. Gas exchange and electromyography (EMG) activity (n = 11) from 4 lower-limb muscles were monitored throughout the tests. Physiological and EMG data measured at V˙O2max were compared between the 2 protocols using paired t tests. Results: V˙O2max during the DEC was 3.0% (5.9%) higher than during INC (range 94%–116%; P = .01), in spite of a lower power output (−21 [20] W, P < .001) at V˙O2max. Pulmonary ventilation (P = .036) and breathing rate (P = .023) were also higher during DEC. EMG activity measured at V˙O2max was not different between tests, despite the lower output during DEC. Conclusions: A DEC exercise test produces higher V˙O2max in cycling compared with an INC test, which was accompanied by higher pulmonary ventilation and similar EMG activity. The additional O2 uptake during DEC might be related to extra work performed either by the respiratory muscles and/or the less oxidatively efficient leg muscles.

Beltrami, Froyd, and Noakes are with the Dept of Human Biology, Exercise Sciences and Sports Medicine Unit, University of Cape Town, Cape Town, South Africa. Beltrami is also with the Exercise Physiology Lab, Inst of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland. Froyd is also with the Western Norway University of Applied Sciences, Sogndal, Norway. Mauger is with the Endurance Research Group, School of Sport and Exercise Sciences, University of Kent, Kent, United Kingdom. Metcalfe is with the Dept for Molecular and Cellular Sports Medicine, Inst for Cardiovascular Research and Sports Medicine, German Sport University, Cologne, Germany. Noakes is also with the Centre for Communication Studies, Cape Peninsula University of Technology, Cape Town, South Africa.

Beltrami (fernando.beltrami@hest.ethz.ch) is corresponding author.

Supplementary Materials

    • Supplemental Figure 1 (PDF 258 KB)
  • 1.

    Poole DC, Jones AM. CORP: measurement of the maximum oxygen uptake (VO2max): VO2peak is no longer acceptable. J Appl Physiol. 2017:jap.01063.2016. doi:10.1152/japplphysiol.01063.2016

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Foster C, Green MA, Snyder AC, Thompson NN. Physiological responses during simulated competition. Med Sci Sports Exerc. 1993;25(7):877882. PubMed ID: 8350712 doi:10.1249/00005768-199307000-00018. http://europepmc.org/abstract/med/8350712. Accessed August 7, 2014.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    McGawley K, Holmberg H-C. Aerobic and anaerobic contributions to energy production among junior male and female cross-country skiers during diagonal skiing. Int J Sports Physiol Perform. 2014;9(1):3240. PubMed ID: 24088732 doi:10.1123/ijspp.2013-0239

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Mauger AR, Metcalfe AJ, Taylor L, Castle PC. The efficacy of the self-paced V ˙ O 2 max test to measure maximal oxygen uptake in treadmill running. Appl Physiol Nutr Metab. 2013;38(12):12111216. PubMed ID: 24195621 doi:10.1139/apnm-2012-0384

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Beltrami FG, Froyd C, Mauger AR, Metcalfe AJ, Marino F, Noakes TD. Conventional testing methods produce submaximal values of maximum oxygen consumption. Br J Sports Med. 2012;46(1):2329. PubMed ID: 22167716 doi:10.1136/bjsports-2011-090306

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Beltrami FG, Noakes TD. Conventional testing produces submaximal values for oxygen uptake in elite runners. Int J Sports Physiol Perform. 2021:16. doi:10.1123/ijspp.2020-0778

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Hogg JS, Hopker JG, Mauger AR. The self-paced VO2max test to assess maximal oxygen uptake in highly trained runners. Int J Sports Physiol Perform. 2015;10(2):172177. PubMed ID: 25010089 doi:10.1123/ijspp.2014-0041

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Hanson NJ, Scheadler CM, Lee TL, Neuenfeldt NC, Michael TJ, Miller MG. Modality determines VO2max achieved in self-paced exercise tests: validation with the Bruce protocol. Eur J Appl Physiol. 2016;116(7):13131319. PubMed ID: 27150353 doi:10.1007/s00421-016-3384-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Taylor K, Seegmiller J, Vella CA. The decremental protocol as an alternative protocol to measure maximal oxygen consumption in athletes. Int J Sports Physiol Perform. 2016;11(8):10941099. PubMed ID: 27002933 doi:10.1123/ijspp.2015-0488

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Jenkins LA, Mauger AR, Hopker JG. Age differences in physiological responses to self-paced and incremental VO2max testing. Eur J Appl Physiol. 2017;117(1):159170. PubMed ID: 27942980 doi:10.1007/s00421-016-3508-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Millet GP, Vleck VE, Bentley DJ. Physiological differences between cycling and running: lessons from triathletes. Sports Med. 2009;39(3):179206. PubMed ID: 19290675 doi:10.2165/00007256-200939030-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Jacobs Ra, Rasmussen P, Siebenmann C, et al. Determinants of time trial performance and maximal incremental exercise in highly trained endurance athletes. J Appl Physiol. 2011;111(5):14221430. doi:10.1152/japplphysiol.00625.2011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol. 2000;10(5):361374. PubMed ID: 11018445 doi:10.1016/S1050-6411(00)00027-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Torres-Peralta R, Morales-Alamo D, González-Izal M, et al. Task failure during exercise to exhaustion in Normoxia and Hypoxia is due to reduced muscle activation caused by central mechanisms while muscle metaboreflex does not limit performance. Front Physiol. 2016;6:115. doi:doi:10.3389/fphys.2015.00414

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Hopkins WG. Measures of reliability in sports medicine and science. Sports Med. 2000;30(1):115. PubMed ID: 10907753 doi:10.2165/00007256-200030010-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Zhang YY, Johnson MC, Chow N, Wasserman K. Effect of exercise testing protocol on parameters of aerobic function. Med Sci Sports Exerc. 1991;23(5):625630. PubMed ID: 2072842 doi:10.1249/00005768-199105000-00016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Midgley AW, McNaughton LR, Polman R, Marchant D. Criteria for determination of maximal oxygen uptake: a brief critique and recommendations for future research. Sports Med. 2007;37(12):10191028. http://www.ncbi.nlm.nih.gov/pubmed/18027991. PubMed ID: 18027991 doi:10.2165/00007256-200737120-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Brink-Elfegoun T, Holmberg H-C, Ekblom MN, Ekblom B. Neuromuscular and circulatory adaptation during combined arm and leg exercise with different maximal work loads. Eur J Appl Physiol. 2007;101(5):603611. PubMed ID: 17690901 doi:10.1007/s00421-007-0526-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Black MI, Jones AM, Blackwell JR, et al. Muscle metabolic and neuromuscular determinants of fatigue during cycling in different exercise intensity domains. J Appl Physiol. 2017;122(3):446459. PubMed ID: 28008101 doi:10.1152/japplphysiol.00942.2016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Burnley M, Doust JH, Vanhatalo A. A 3-min all-out test to determine peak oxygen uptake and the maximal steady state. Med Sci Sports Exerc. 2006;38(11):19952003. PubMed ID: 17095935 doi:10.1249/01.mss.0000232024.06114.a6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Vanhatalo A, Poole DC, DiMenna FJ, Bailey SJ, Jones AM. Muscle fiber recruitment and the slow component of O2 uptake: constant work rate vs. all-out sprint exercise. Am J Physiol Regul Integr Comp Physiol. 2011;300(3):R700R707. PubMed ID: 21160059 doi:10.1152/ajpregu.00761.2010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Mortensen SP, Dawson Ea, Yoshiga CC, et al. Limitations to systemic and locomotor limb muscle oxygen delivery and uptake during maximal exercise in humans. J Physiol. 2005;566(1):273285. doi:10.1113/jphysiol.2005.086025

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Mortensen SP, Damsgaard R, Dawson Ea, Secher NH, González-Alonso J. Restrictions in systemic and locomotor skeletal muscle perfusion, oxygen supply and VO2 during high-intensity whole-body exercise in humans. J Physiol. 2008;586(10):26212635. PubMed ID: 18372307 doi:10.1113/jphysiol.2007.149401

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Hogan MC, Roca J, West JB, Wagner PD. Dissociation of maximal O2 uptake from O2 delivery in canine gastrocnemius in situ. J Appl Physiol. 1989;66(3):12191226. PubMed ID: 2708246 doi:10.1152/jappl.1989.66.3.1219 http://jap.physiology.org/content/jap/66/3/1219.full.pdf. Accessed August 12, 2014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Aaron EA, Seow KC, Johnson BD, Dempsey JA. Oxygen cost of exercise hyperpnea: implications for performance. J Appl Physiol. 1992;72(5):18181825. PubMed ID: 1601791 doi:10.1152/jappl.1992.72.5.1818 http://jap.physiology.org/content/jap/72/5/1818.full.pdf. Accessed August 7, 2014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Poole DC, Ward Sa, Gardner GW, Whipp BJ. Metabolic and respiratory profile of the upper limit for prolonged exercise in man. Ergonomics. 1988;31(9):12651279. PubMed ID: 3191904 doi:10.1080/00140138808966766

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Harms CA, Wetter TJ, St Croix CM, Pegelow DF, Dempsey JA. Effects of respiratory muscle work on exercise performance. J Appl Physiol. 2000;89(1):131138. PubMed ID: 10904044 doi:10.1152/jappl.2000.89.1.131 http://jap.physiology.org/content/89/1/131.short. Accessed August 12, 2014.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Scharhag-Rosenberger F, Carlsohn A, Lundby C, Schüler S, Mayer F, Scharhag J. Can more than one incremental cycling test be performed within one day? Eur J Sport Sci. 2014;14(5):459467. PubMed ID: 24168437 doi:10.1080/17461391.2013.853208

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1097 1097 136
Full Text Views 30 30 1
PDF Downloads 48 48 1