Biophysical Impact of 5-Week Training Cessation on Sprint Swimming Performance

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Jesús J. Ruiz-NavarroAquatics Lab, Faculty of Sport Sciences, Department of Physical Education and Sports, University of Granada, Granada, Spain

Search for other papers by Jesús J. Ruiz-Navarro in
Current site
Google Scholar
PubMed
Close
,
Ana GayAquatics Lab, Faculty of Sport Sciences, Department of Physical Education and Sports, University of Granada, Granada, Spain

Search for other papers by Ana Gay in
Current site
Google Scholar
PubMed
Close
,
Rodrigo ZaccaResearch Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto (FADEUP), Porto, Portugal
Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal

Search for other papers by Rodrigo Zacca in
Current site
Google Scholar
PubMed
Close
,
Francisco Cuenca-FernándezAquatics Lab, Faculty of Sport Sciences, Department of Physical Education and Sports, University of Granada, Granada, Spain

Search for other papers by Francisco Cuenca-Fernández in
Current site
Google Scholar
PubMed
Close
,
Óscar López-BelmonteAquatics Lab, Faculty of Sport Sciences, Department of Physical Education and Sports, University of Granada, Granada, Spain

Search for other papers by Óscar López-Belmonte in
Current site
Google Scholar
PubMed
Close
,
Gracia López-ContrerasAquatics Lab, Faculty of Sport Sciences, Department of Physical Education and Sports, University of Granada, Granada, Spain

Search for other papers by Gracia López-Contreras in
Current site
Google Scholar
PubMed
Close
,
Esther Morales-OrtizAquatics Lab, Faculty of Sport Sciences, Department of Physical Education and Sports, University of Granada, Granada, Spain

Search for other papers by Esther Morales-Ortiz in
Current site
Google Scholar
PubMed
Close
, and
Raúl ArellanoAquatics Lab, Faculty of Sport Sciences, Department of Physical Education and Sports, University of Granada, Granada, Spain

Search for other papers by Raúl Arellano in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Purpose: To assess changes in swimming performance, anthropometrics, kinematics, energetics, and strength after 5-week training cessation. Methods: Twenty-one trained and highly trained swimmers (13 males: 17.4 [3.1] y; 50-m front crawl 463 [77] FINA points; 8 females: 16.7 [1.7] y; 50-m front crawl 535 [48] FINA points) performed a 50-m front-crawl all-out swim test, dryland and pool-based strength tests, and 10-, 15-, 20-, and 25-m front-crawl all-out efforts for anaerobic critical velocity assessment before and after a 5-week training cessation. Heart rate and oxygen uptake (V˙O2) were continuously measured before and after the 50-m swim test (off-kinetics). Results: Performance was impaired 1.9% (0.54 s) for males (P = .007, d = 0.91) and 2.9% (0.89 s) for females (P = .033, d = 0.93). Neither the anthropometrical changes (males: r2 = .516, P = .077; females: r2 = .096, P = .930) nor the physical activities that each participant performed during the off-season (males: r2 = .060, P = .900; females: r2 = .250, P = .734) attenuated performance impairments. Stroke rate and clean swimming speed decreased (P < .05), despite similar stroke length and stroke index (P > .05). Blood lactate concentrations remained similar (P > .05), but V˙O2 peak decreased in females (P = .04, d = 0.85). Both sexes showed higher heart rate before and after the 50-m swim test after 5 weeks (P < .05). Anaerobic metabolic power deterioration was only observed in males (P = .035, d = 0.65). Lower in-water force during tethered swimming at zero speed was observed in males (P = .033, d = 0.69). Regarding dryland strength, lower-body impairments were observed for males, while females showed upper-body impairments (P < .05). Conclusions: A 5-week training cessation yielded higher heart rate in the 50-m front crawl, anaerobic pathways, and dryland strength impairments. Coaches should find alternatives to minimize detraining effects during the off-season.

Arellano (r.arellano@ugr.es) is corresponding author.

Supplementary Materials

    • Supplementary Material S1 (PDF 178 KB)
    • Supplementary Material S2 (PDF 378 KB)
  • Collapse
  • Expand
  • 1.

    Mujika I, Padilla S. Detraining: loss of training-induced physiological and performance adaptations. Part I. Sports Med. 2000;30(2):7987. doi:10.2165/00007256-200030020-00002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Zacca R, Toubekis A, Freitas L, et al. Effects of detraining in age-group swimmers performance, energetics and kinematics. J Sports Sci. 2019;37(13):14901498. doi:10.1080/02640414.2019.1572434

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Hay JG, Guimaraes ACS. A quantitative look at swimming biomechanics. Swim Tech. 1983;20:1117.

  • 4.

    Barbosa TM, Bragada JA, Reis VM, Marinho DA, Carvalho C, Silva AJ. Energetics and biomechanics as determining factors of swimming performance: updating the state of the art. J Sci Med Sport. 2010;13(2):262269. PubMed ID: 19409842 doi:10.1016/j.jsams.2009.01.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Zamparo P, Cortesi M, Gatta G. The energy cost of swimming and its determinants. Eur J Appl Physiol. 2020;120(1):4166. PubMed ID: 31807901 doi:10.1007/s00421-019-04270-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Barbosa TM, Costa MJ, Marinho DA. Proposal of a deterministic model to explain swimming performance. Int J Swim Kinet. 2013;2(1):154.

    • Search Google Scholar
    • Export Citation
  • 7.

    Costill D, Kovalevski J, Porter D, Kirwan J, Fielding R, King D. Energy expenditure during front crawl swimming: predicting success in middle-distance events. Int J Sports Med. 1985;6(5):266270. doi:10.1055/s-2008-1025849

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Gonjo T, Olstad BH. Race analysis in competitive swimming: a narrative review. Int J Environ Res Public Health. 2021;18(1):116. doi:10.3390/ijerph18010069

    • Search Google Scholar
    • Export Citation
  • 9.

    Di Prampero PE. The energy cost of human locomotion on land and in water. Int J Sports Med. 1986;7(02):5572. PubMed ID: 3519480 doi:10.1055/s-2008-1025736

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Gastin PB. Energy system interaction and relative contribution during maximal exercise. Sports Med. 2001;31(10):725741. doi:10.2165/00007256-200131100-00003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Ribeiro J, Figueiredo P, Sousa A, et al. VO2 kinetics and metabolic contributions during full and upper body extreme swimming intensity. Eur J Appl Physiol. 2015;115(5):11171124. PubMed ID: 25547736 doi:10.1007/s00421-014-3093-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Neiva HP, Fernandes RJ, Vilas-Boas JP. Anaerobic critical velocity in four swimming techniques. Int J Sports Med. 2011;32(3):195198. PubMed ID: 21165797 doi:10.1055/s-0030-1268474

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Crowley E, Harrison AJ, Lyons M. The impact of resistance training on swimming performance: a systematic review. Sports Med. 2017;47(11):22852307. doi:10.1007/s40279-017-0730-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Ruiz-Navarro JJ, Morouço PG, Arellano R. Relationship between tethered swimming in a flume and swimming performance. Int J Sports Physiol Perform. 2020;15(8):10871094. doi:10.1123/ijspp.2019-0466

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Hermosilla F, Sanders R, Gonz F, Yustres I, Gonz M. Effects of dry-land training programs on swimming turn performance: a systematic review. Int J Environ Res Public Health. 2021;18(17):9340. doi:10.3390/ijerph18179340

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Mckay AKA, Stellingwerff T, Smith ES, et al. Defining training and performance caliber: a participant classification framework. Int J Sports Physiol Perform. 2022;17(2):317331. PubMed ID: 34965513 doi:10.1123/ijspp.2021-0451

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Ruiz-Navarro JJ, López-Belmonte Ó, Gay A, Cuenca-Fernández F, Arellano R. A new model of performance classification to standardize the research results in swimming. Eur J Sport Sci. Advance online publication March 20, 2022. doi:10.1080/17461391.2022.2046174

    • Search Google Scholar
    • Export Citation
  • 18.

    Atkinson G, Reilly T. Circadian variation in sports performance. Sports Med. 1996;21(4):292312. doi:10.2165/00007256-199621040-00005

  • 19.

    Mujika I, Busso T, Lacoste L, Barale F, Geyssant A, Chatard J-C. Modeled responses to training and taper in competitive swimmers. Med Sci Sports Exerc. 1996;28(2):251258. PubMed ID: 8775162 doi:10.1097/00005768-199602000-00015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Mirwald RL, Baxter-Jones ADG, Bailey DA, Beunen GP. An assessment of maturity from anthropometric measurements. Med Sci Sport Exerc. 2002;34(4):689694.

    • Search Google Scholar
    • Export Citation
  • 21.

    Perez-Olea JI, Valenzuela PL, Aponte C, Izquierdo M. Relationship between dryland strength and swimming performance: pull-up mechanics as a predictor of swimming speed. J Strength Cond Res. 2018;32(6):16371642. PubMed ID: 29786624

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Özyener F, Rossiter HB, Ward SA, Whipp BJ. Influence of exercise intensity on the on- and off- transient kinetics of pulmonary oxygen uptake in humans. J Physiol. 2001;533(3):891902. doi:10.1111/j.1469-7793.2001.t01-1-00891.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Knuttgen HG. Oxygen debt after submaximal physical exercise. J Appl Physiol. 1970;29(5):651657. PubMed ID: 5474857 doi:10.1152/jappl.1970.29.5.651

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Monteiro AS, Carvalho DD, Azevedo R, Vilas-Boas JP, Zacca R, Fernandes RJ. Post-swim oxygen consumption: assessment methodologies and kinetics analysis. Physiol Meas. 2020;41(10):105005. doi:10.1088/1361-6579/abb143

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Zacca R, Azevedo R, Figueiredo P, et al. VO2FITTING: a free and open-source software for modelling oxygen uptake kinetics in swimming and other exercise modalities. Sports. 2019;7(2):31. doi:10.3390/sports7020031

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Thevelein X, Daly D, Persyn U. Measurement of total energy use in the evaluation of competitive swimmers. In: Bachl N, Prakop L, Suckaert R, eds. Current Topics in Sports Medicine. Wien: Urban & Schwartzenberg; 1984:668676.

    • Search Google Scholar
    • Export Citation
  • 27.

    Di Prampero PE, Ferretti G. The energetics of anaerobic muscle metabolism: a reappraisal of older and recent concepts. Respir Physiol. 1999;118(2–3):103115. PubMed ID: 10647856 doi:10.1016/S0034-5687(99)00083-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Sousa A, Figueiredo P, Keskinen KL, et al. VO2 off transient kinetics in extreme intensity swimming. J Sport Sci Med. 2011;10(3):546552.

    • Search Google Scholar
    • Export Citation
  • 29.

    Craig CL, Marshall AL, Sjöström M, et al. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2003;35(8):13811395. PubMed ID: 12900694 doi:10.1249/01.MSS.0000078924.61453.FB

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. Lawrence Erlbaum Associates; 1988:2027.

  • 31.

    Wakayoshi K, D’Acquisto LJ, Cappaert JM, Troup JP. Relationship between oxygen uptake, stroke rate and swimming velocity in competitive swimming. Int J Sports Med. 1995;16(1):1923. PubMed ID: 7713625 doi:10.1055/s-2007-972957

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Zamparo P. Effects of age and gender on the propelling efficiency of the arm stroke. Eur J Appl Physiol. 2006;97(1):5258. PubMed ID: 16468063 doi:10.1007/s00421-006-0133-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Silveira RP, Soares SM, Zacca R, et al. A biophysical analysis on the arm stroke efficiency in front crawl swimming: comparing methods and determining the main performance predictors. Int J Environ Res Public Health. 2019;16(23):121. doi:10.3390/ijerph16234715

    • Search Google Scholar
    • Export Citation
  • 34.

    Aspenes ST, Karlsen T. Exercise-training intervention studies in competitive swimming. Sports Med. 2012;42(6):527543. doi:10.2165/11630760-000000000-00000

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Tabata I, Nishimura K, Kouzaki M, et al. Effects of moderate-intensity endurance and high-intensity intermittent training on anaerobic capacity and VO2max. Med Sci Sports Exerc. 1996;28(10):13271330. PubMed ID: 8897392 doi:10.1097/00005768-199610000-00018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Marques MC, Costa AM, Pereira A, et al. Strength training and detraining in different populations: case studies. J Hum Kinet. 2011;29:714. doi:10.2478/v10078-011-0052-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Costill DL, Fink W, Hargreaves M, King DS, Thomas R, Fielding R. Metabolic characteristics of skeletal muscle during detraining from competitive swimming. Med Sci Sports Exerc. 1985;17(3):339343. PubMed ID: 3160908 doi:10.1249/00005768-198506000-00007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Zacca R, Mezêncio B, de Souza Castro FA, et al. Case study: comparison of swimsuits and wetsuits through biomechanics and energetics in elite female open water swimmers. Int J Sports Physiol Perform. 2022;17(1):130136. doi:10.1123/ijspp.2021-0044

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1882 1882 181
Full Text Views 53 53 3
PDF Downloads 70 70 5