Relationship Between Game Load and Player’s Performance in Professional Basketball

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Franc GarcíaSports Performance Area, Futbol Club Barcelona, Barcelona, Spain
Barça Innovation Hub, Futbol Club Barcelona, Barcelona, Spain

Search for other papers by Franc García in
Current site
Google Scholar
PubMed
Close
*
,
Daniel FernándezSports Performance Area, Futbol Club Barcelona, Barcelona, Spain
Barça Innovation Hub, Futbol Club Barcelona, Barcelona, Spain

Search for other papers by Daniel Fernández in
Current site
Google Scholar
PubMed
Close
, and
Lorena MartínUniversity of Southern California, Los Angeles, CA, USA

Search for other papers by Lorena Martín in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: The purpose of the study was to examine the relationships between external and internal loads, and their ratio (efficiency index), with game performance between backcourt and frontcourt professional basketball players. Methods: Game loads of 14 basketball players were monitored during 6 games. External load variables measured were total distance (TD); distance >18 km·h−1, commonly known as high-speed running (HSR); and number of accelerations (ACC) and decelerations (DEC) >3 m·s−2, whereas the internal load variable measured was average heart rate (HRmean). The ratio between external and internal load variables was calculated and defined through 4 efficiency indexes (TD:HRmean, HSR:HRmean, ACC:HRmean, and DEC:HRmean). Furthermore, basketball performance was quantified using game-related statistics. Results: TD presented a small association with basketball performance, whereas the other external load variables and the 4 efficiency indexes calculated showed trivial relationships with game-related statistics. Furthermore, HRmean showed the greatest (small) associations with individual performance (P = .01–.02; r = .19 to .22). Regarding specific positions, the only 2 variables that presented significant differences were DEC (P = .01; d = 0.86) and DEC:HRmean (P = .01; d = 0.81), which showed higher values in backcourt players compared with frontcourt players. Conclusions: The results suggest that the best performances of basketball players during official competition are not associated with higher game loads. This illustrates the necessity to assess basketball performance from a holistic approach and consider more than just external and internal variables to better understand the players’ performance during basketball competition.

García (francgarciagarrido@gmail.com) is corresponding author.

  • Collapse
  • Expand
  • 1.

    Hulteen RM, Smith JJ, Morgan PJ, et al. Global participation in sport and leisure-time physical activities: a systematic review and meta-analysis. Prev Med. 2017;95(2):1425. PubMed ID: 27939265 doi:10.1016/j.ypmed.2016.11.027

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Sansone P, Tschan H, Foster C, Tessitore A. Monitoring training load and perceived recovery in female basketball: implications for training design. J Strength Cond Res. 2020;34(10):29292936. PubMed ID: 30589724 doi:10.1519/JSC.0000000000002971

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Impellizzeri FM, Marcora SM, Coutts AJ. Internal and external training load: 15 years on. Int J Sports Physiol Perform. 2019;14(2):270273. PubMed ID: 30614348 doi:10.1123/ijspp.2018-0935

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Vázquez-Guerrero J, Casals M, Corral-López J, Sampaio J. Higher training workloads do not correspond to the best performances of elite basketball players. Res Sport Med. 2020;28(4):540552. PubMed ID: 32686493 doi:10.1080/15438627.2020.1795662

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Berkelmans DM, Dalbo VJ, Kean CO, et al. Heart rate monitoring in basketball: applications, player responses, and practical recommendations. Strength Cond J. 2018;32(8):23832399. PubMed ID: 29140908 doi:10.1519/JSC.0000000000002194

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Stojanović E, Stojiljković N, Scanlan AT, Dalbo VJ, Berkelmans DM, Milanović Z. The activity demands and physiological responses encountered during basketball match-play: a systematic review. Sport Med. 2018;48(1):111135. PubMed ID: 29039018 doi:10.1007/s40279-017-0794-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Russell JL, Mclean BD, Impellizzeri FM, Strack DS, Coutts AJ. Measuring physical demands in basketball: an explorative systematic review of practices. Sport Med. 2020;51(1):81112. doi:10.1007/s40279-020-01375-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Sansone P, Ceravolo A, Tessitore A. External, internal, perceived training loads and their relationships in youth basketball players across different positions. Int J Sports Physiol Perform. 2021;17(2):249255. PubMed ID: 34583325 doi:10.1123/ijspp.2020-0962

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Gryko K, Kopiczko A, Mikołajec K, Stasny P, Musalek M. Anthropometric variables and somatotype of young and professional male basketball players. Sports. 2018;6(1):9. PubMed ID: 29910313 doi:10.3390/sports6010009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    García F, Vázquez-Guerrero J, Castellano J, Casals M, Schelling X. Differences in physical demands between game quarters and playing positions on professional basketball players during official competition. J Sport Sci Med. 2020;19(2):256263. PubMed ID: 32390718

    • Search Google Scholar
    • Export Citation
  • 11.

    Lima-alves AA, Claudino JG, Boullosa D, Paulo S. The relationship between internal and external loads as a tool to monitor physical fitness status of team sport athletes: a systematic review. Biol Sport. 2021;39(3):629638. doi:10.5114/biolsport.2022.107021

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Taylor RJ, Sanders D, Myers T, Akubat I. Reliability and validity of integrated external and internal load ratios as measures of fitness in academy rugby union players. J Strength Cond Res. 2020;34(6):17231730. PubMed ID: 32459414 doi:10.1519/JSC.0000000000002391

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Akubat I, Barrett S, Sagarra M, Abt G. The validity of external:internal training load ratios in rested and fatigued soccer players. Sports. 2018;6(2):44. PubMed ID: 29910348 doi:10.3390/sports6020044

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Fox JL, Stanton R, Scanlan AT. A comparison of training and competition demands in semiprofessional male basketball players. Res Q Exerc Sport. 2018;89(1):103111. PubMed ID: 29334021 doi:10.1080/02701367.2017.1410693

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    McCaskie CJ, Young WB, Fahrner BB, Sim M. Association between preseason training and performance in elite Australian football. Int J Sports Physiol Perform. 2019;14(1):6875. PubMed ID: 30117344 doi:10.1123/ijspp.2018-0076

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Fox JL, Stanton R, O’Grady JC, Teramoto M, Sargent C, Scanlan TA. Are acute player workloads associated with in-game performance in basketball? Biol Sport. 2020;39(1):95100. doi:10.5114/biolsport.2021.102805

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Sansone P, Gasperi L, Tessitore A, Gomez MA. Training load, recovery and game performance in semi-professional male basketball: influence of individual characteristics and contextual factors. Biol Sport. 2021;38(2):207217. PubMed ID: 34079165 doi:10.5114/BIOLSPORT.2020.98451

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Martínez JA. A more robust estimation and extension of factors determining production (FDP) of basketball players. Int J Phys Educ Sports Health. 2019;6(3):8185. https://www.researchgate.net/publication/332878683

    • Search Google Scholar
    • Export Citation
  • 19.

    Winter EM, Maughan RJ. Requirements for ethics approvals. J Sports Sci. 2009;27(10):985985. PubMed ID: 19847681 doi:10.1080/02640410903178344

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Harriss DJ, Atkinson G. Ethical standards in sport and exercise science research: 2016 update. Int J Sports Med. 2015;36(14):11211124. PubMed ID: 26671845 doi:10.1055/s-0035-1565186

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Vázquez-Guerrero J, Fernández-Valdés B, Jones B, Moras G, Reche X, Sampaio J. Changes in physical demands between game quarters of U18 elite official basketball games. PLoS One. 2019;14(9):114. PubMed ID: 31479464 doi:10.1371/journal.pone.0221818

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Tarragó JR, Massafret-Marimón M, Vargas SF, Morera CF. Training in team sports: structured training in the FCB. Apunt Educ Física i Esports. 2019;137(3):103114. doi:10.5672/apunts.2014-0983.es.(2019/3).137.08

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Gómez A, Roqueta E, Tarragó JR, Vargas SF, Morera CF. Training in team sports: coadjuvant training in the FCB. Apunt Educ Física i Esports. 2019;(138):1325. doi:10.5672/apunts.2014-0983.cat.(2019/3).137.08

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Pons E, Martín-García A, Guitart M, et al. Training in team sports: optimiser training in the FCB. Apunt Educ Física i Esports. 2020;142:5566. doi:10.5672/apunts.2014-0983.es.(2020/4).142.07

    • Search Google Scholar
    • Export Citation
  • 25.

    Castellano J, Casamichana D, Calleja-González J, Román JS, Ostojic SM. Reliability and accuracy of 10 Hz GPS devices for short-distance exercise. J Sport Sci Med. 2011;10(1):233234. PubMed ID: 24137056.

    • Search Google Scholar
    • Export Citation
  • 26.

    García F, Schelling X, Castellano J, Pla F, Vázquez-Guerrero J. Comparison of the most demanding scenarios during different in-season training sessions and official matches in professional basketball players. Biol Sport. 2021;39(2):237244. PubMed ID: 35309543 doi:10.5114/biolsport.2022.104064

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Bastida-Castillo A, Gómez-Carmona C, De la Cruz-Sánchez E, Reche-Royo X, Ibáñez S, Pino Ortega J. Accuracy and inter-unit reliability of ultra-wide-band tracking system in indoor exercise. Appl Sci. 2019;9(5):939. doi:10.3390/app9050939

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    García F, Castellano J, Reche X, Vázquez-Guerrero J. Average game physical demands and the most demanding scenarios of basketball competition in various age groups. J Hum Kinet. 2021;79(1):165174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Malone JJ, Lovell R, Varley MC, Coutts AJ. Unpacking the black box: applications and considerations for using gps devices in sport. Int J Sports Physiol Perform. 2017;12:1826. PubMed ID: 27736244 doi:10.1123/ijspp.2016-0236

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Scanlan AT, Tucker PS, Dascombe BJ, Berkelmans DM. Fluctuations in activity demands across game quarters in professional and semiprofessional male basketball. J Strength Cond Res. 2015;29(11):30063015. PubMed ID: 25932983 doi:10.1519/JSC.0000000000000967

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Wilcox RR. Fundamentals of Modern Statistical Methods: Substantially Improving Power and Accuracy. 2nd ed. Springer-Verlag; 2010. https://www.springer.com/gp/book/9781441955241

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):312. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Hopkins WG. A scale of magnitudes for effect statistics. SportSci. 2006. http://www.sportsci.org/resource/stats/index.html.

  • 34.

    Plonsky L. Advancing Quantitative Methods in Second Language Research. 1st ed. Routledge; 2015.

  • 35.

    Fox JL, Stanton R, Sargent C, Wintour SA, Scanlan AT. The association between training load and performance in team sports: a systematic review. Sports Med. 2018:48(12):27432774. PubMed ID: 30225537 doi:10.1007/s40279-018-0982-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Seirul lo Vargas F. Entrenamiento En Los Deportes de Equipo. Author;2017.

  • 37.

    Ferioli D, Rampinini E, Martin M, et al. Influence of ball possession and playing position on the physical demands encountered during professional basketball games. Biol Sport. 2020;37(3):269276. PubMed ID: 32879549 doi:10.5114/biolsport.2020.95638

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Vázquez-Guerrero J, Garcia F. Is it enough to use the traditional approach based on average values for basketball physical performance analysis? Eur J Sport Sci. 2021;21(11):15511558. PubMed ID: 33070715 doi:10.1080/17461391.2020.1838618

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Sampaio J, McGarry T, Calleja-González J, Jiménez Sáiz S, Del Alcázar SIX, Balciunas M. Exploring game performance in the national basketball association using player tracking data. PLoS One. 2015;10(7):114. PubMed ID: 26171606 doi:10.1371/journal.pone.0132894

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1560 1560 161
Full Text Views 56 56 1
PDF Downloads 75 75 0