The 2-Point Method: A Quick, Accurate, and Repeatable Approach to Estimate Ultrasound-Derived Quadriceps Femoris Cross-Sectional Area

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Alejandro Hernández-BelmonteHuman Performance and Sports Science Laboratory. Faculty of Sport Sciences, University of Murcia, Murcia, Spain

Search for other papers by Alejandro Hernández-Belmonte in
Current site
Google Scholar
PubMed
Close
,
Alejandro Martínez-CavaHuman Performance and Sports Science Laboratory. Faculty of Sport Sciences, University of Murcia, Murcia, Spain

Search for other papers by Alejandro Martínez-Cava in
Current site
Google Scholar
PubMed
Close
, and
Jesús G. PallarésHuman Performance and Sports Science Laboratory. Faculty of Sport Sciences, University of Murcia, Murcia, Spain

Search for other papers by Jesús G. Pallarés in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Purpose: To analyze the feasibility of the 2-point method for estimating ultrasound-derived quadriceps femoris cross-sectional area (QUADACSA). First, (1) the agreement between QUADACSA measured by panoramic ultrasound and magnetic resonance imaging (MRI) was studied, and thereafter, we examined 2 approaches of the 2-point method in terms of (2) estimation errors and (3) test–retest repeatability. Methods: Both thighs of 16 young men were analyzed. Ultrasound-QUADACSA versus MRI-QUADACSA comparison was conducted at 6 thigh lengths (20%–70% of the thigh length). Thereafter, ultrasound-QUADACSA corresponding to 30% and 60% (2-point30%–60%) or 20% and 70% (2-point20%–70%) were used to estimate QUADACSA of the remaining regions. Estimated QUADACSA resulting from both 2-point approaches was compared with the measured one. Finally, the test–retest repeatability was examined by comparing the errors generated on 2 separate estimations. Statistics included the standard error of measurement (SEM) expressed in absolute (in square centimeters) and relative terms (in percentage) as a coefficient of variation (CV), as well as the intraclass correlation cofficient (ICC) and bias. Results: An excellent agreement (ICC ≥ 0.980) and reduced errors (SEM ≤ 2.43 cm2) resulted from the ultrasound-QUADACSA versus MRI-QUADACSA comparison. Although estimation errors found were reduced (CV ≤ 7.50%), they proved to be lower and less biased for the 2-point30%–60%, especially at the central regions (SEM ≤ 2.01 cm2; bias ≤ 0.89 cm2). Similarly, repeatability analysis revealed lower test–retest errors for the 2-point30%–60% (CV ≤ 1.9%) than for the 2-point20%–70% (CV ≤ 4.6%). Conclusion: The 2-point method, especially that implemented using the 30% and 60% regions, represents an accurate and repeatable strategy to evaluate QUADACSA.

  • Collapse
  • Expand
  • 1.

    Earp JE, Newton RU, Cormie P, Blazevich AJ. Inhomogeneous quadriceps femoris hypertrophy in response to strength and power training. Med Sci Sports Exerc. 2015;47(11):23892397. PubMed ID: 25811947 doi:10.1249/MSS.0000000000000669

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Monti E, Franchi MV, Badiali F, Quinlan JI, Longo S, Narici MV. The time-course of changes in muscle mass, architecture and power during 6 weeks of plyometric training. Front Physiol. 2020;11:946. PubMed ID: 32848873 doi:10.3389/fphys.2020.00946

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Trezise J, Collier N, Blazevich AJ. Anatomical and neuromuscular variables strongly predict maximum knee extension torque in healthy men. Eur J Appl Physiol. 2016;116(6):11591177. PubMed ID: 27076217 doi:10.1007/s00421-016-3352-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Balshaw TG, Maden-wilkinson TM, Massey GJ, Folland JP. The human muscle size and strength relationship: effects of architecture, muscle force and measurement location. Med Sci Sports Exerc. 2021;53(10):21402151. PubMed ID: 33935234 doi:10.1249/MSS.0000000000002691

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Franchi MV, Atherton PJ, Reeves ND, et al. Architectural, functional and molecular responses to concentric and eccentric loading in human skeletal muscle. Acta Physiol. 2014;210(3):642654. PubMed ID: 24387247 doi:10.1111/apha.12225

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Seynnes OR, De Boer M, Narici MV. Early skeletal muscle hypertrophy and architectural changes in response to high-intensity resistance training. J Appl Physiol. 2007;102(1):368373. PubMed ID: 17053104 doi:10.1152/japplphysiol.00789.2006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Franchi MV, Raiteri BJ, Longo S, Sinha S, Narici MV, Csapo R. Muscle architecture assessment: strengths, shortcomings and new frontiers of in vivo imaging techniques. Ultrasound Med Biol. 2018;44(12):24922504. PubMed ID: 30185385 doi:10.1016/j.ultrasmedbio.2018.07.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Valera-Calero JA, Ojedo-Martín C, Fernández-de-las-Peñas C, Cleland JA, Arias-Buría JL, Hervás-Pérez JP. Reliability and validity of panoramic ultrasound imaging for evaluating muscular quality and morphology: a systematic review. Ultrasound Med Biol. 2021;47(2):185200. PubMed ID: 33189413 doi:10.1016/j.ultrasmedbio.2020.10.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Weng L, Tirumalai AP, Lowery CM, et al. US extended-field-of-view imaging technology. Radiology. 1997;203(3):877880. PubMed ID: 9169720 doi:10.1148/radiology.203.3.9169720

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Noorkoiv M, Nosaka K, Blazevich AJ. Assessment of quadriceps muscle cross-sectional area by ultrasound extended-field-of-view imaging. Eur J Appl Physiol. 2010;109(4):631639. PubMed ID: 20191287 doi:10.1007/s00421-010-1402-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Trezise J, Blazevich AJ. Anatomical and neuromuscular determinants of strength change in previously untrained men following heavy strength training. Front Physiol. 2019;10:1001. PubMed ID: 31447693 doi:10.3389/fphys.2019.01001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Garcia-Ramos A, Jaric S. Two-point method: a quick and fatigue-free procedure for assessment of muscle mechanical capacities and the 1 repetition maximum. Strength Cond J. 2018;40(2):5466. doi:10.1519/ssc.0000000000000359

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    García-Ramos A, Haff GG, Pestaña-Melero FL, et al. Feasibility of the 2-point method for determining the 1-repetition maximum in the bench press exercise. Int J Sports Physiol Perform. 2018;13(4):474481. PubMed ID: 28872384 doi:10.1123/ijspp.2017-0374

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Mandić M, Rullman E, Widholm P, et al. Automated assessment of regional muscle volume and hypertrophy using MRI. Sci Rep. 2020;10(1):2239. PubMed ID: 32042024 doi:10.1038/s41598-020-59267-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Franchi MV, Longo S, Mallinson J, et al. Muscle thickness correlates to muscle cross-sectional area in the assessment of strength training-induced hypertrophy. Scand J Med Sci Sport. 2018;28(3):846885. PubMed ID: 28805932 doi:10.1111/sms.12961

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Berg HE, Tedner B, Tesch PA. Changes in lower limb muscle cross-sectional area and tissue fluid volume after transition from standing to supine. Acta Physiol Scand. 1993;148(4):379385. PubMed ID: 8213193 doi:10.1111/j.1748-1716.1993.tb09573.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Franchi MV, Fitze DP, Hanimann J, Sarto F, Spörri J. Panoramic ultrasound vs MRI for the assessment of hamstrings cross-sectional area and volume in a large athletic cohort. Sci Rep. 2020;10(1):14144. PubMed ID: 32839500 doi:10.1038/s41598-020-71123-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Ahtiainen JP, Hoffren M, Hulmi JJ, et al. Panoramic ultrasonography is a valid method to measure changes in skeletal muscle cross-sectional area. Eur J Appl Physiol. 2010;108(2):273279. PubMed ID: 19777252 doi:10.1007/s00421-009-1211-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    García-Ramos A, Torrejón A, Morales-Artacho AJ, Pérez-Castilla A, Jaric S. Optimal resistive forces for maximizing the reliability of leg muscles’ capacities tested on a cycle ergometer. J Appl Biomech. 2018;34(1):4752. PubMed ID: 28952867 doi:10.1123/jab.2017-0056

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Scott JM, Martin DS, Ploutz-Snyder R, et al. Reliability and validity of panoramic ultrasound for muscle quantification. Ultrasound Med Biol. 2012;38(9):16561661. PubMed ID: 22749820 doi:10.1016/j.ultrasmedbio.2012.04.018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15(2):155163. PubMed ID: 27330520 doi:10.1016/j.jcm.2016.02.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 2010;1(8476):307310. PubMed ID: 2868172 doi:10.1016/j.ijnurstu.2009.10.001

    • Search Google Scholar
    • Export Citation
  • 23.

    Atkinson G, Nevill AM. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med. 1998;26(4):217238. PubMed ID: 9820922 doi:10.2165/00007256-199826040-00002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Lieber RL, Fridén J. Functional and clinical significance of skeletal muscle architecture. Muscle Nerve. 2000;23(11):16471666. PubMed ID: 11054744 doi:10.1002/1097-4598(200011)23:11<1647::AID-MUS1>3.0.CO;2-M

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Bartlett JW, Frost C. Reliability, repeatability and reproducibility: analysis of measurement errors in continuous variables. Ultrasound Obstet Gynecol. 2008;31(4):466475. PubMed ID: 18306169 doi:10.1002/uog.5256

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Bunting KV, Steeds RP, Slater LT, Rogers JK, Gkoutos GV, Kotecha D. A practical guide to assess the reproducibility of echocardiographic measurements. J Am Soc Echocardiogr. 2019;32(12):15051515. PubMed ID: 31653530 doi:10.1016/j.echo.2019.08.015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Fornage BD, Atkinson EN, Nock LF, Jones PH. US with extended field of view: phantom-tested accuracy of distance measurements. Radiology. 2000;214(2):579584. PubMed ID: 10671615 doi:10.1148/radiology.214.2.r00fe20579

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Stokes T, Tripp TR, Murphy K, et al. Methodological considerations for and validation of the ultrasonographic determination of human skeletal muscle hypertrophy and atrophy. Physiol Rep. 2021;9(1):e14683. PubMed ID: 33403796 doi:10.14814/phy2.14683

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    García-Ramos A, Pérez-Castilla A, Jaric S. Optimisation of applied loads when using the two-point method for assessing the force-velocity relationship during vertical jumps. Sport Biomech. 2021;20(3):274289. PubMed ID: 30540216 doi:10.1080/14763141.2018.1545044

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Pérez-Castilla A, Jaric S, Feriche B, Padial P, García-Ramos A. Evaluation of muscle mechanical capacities through the two-load method: optimization of the load selection. J Strength Cond Res. 2018;32(5):12451253. PubMed ID: 28475551 doi:10.1519/JSC.0000000000001969

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 947 947 121
Full Text Views 26 26 0
PDF Downloads 32 32 0