Is Motor Coordination the Key to Success in Youth Cycling?

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Mireille MostaertDepartment of Movement and Sport Sciences, Ghent University, Ghent, Belgium

Search for other papers by Mireille Mostaert in
Current site
Google Scholar
PubMed
Close
*
,
Pieter VansteenkisteDepartment of Movement and Sport Sciences, Ghent University, Ghent, Belgium

Search for other papers by Pieter Vansteenkiste in
Current site
Google Scholar
PubMed
Close
,
Felien LaureysDepartment of Movement and Sport Sciences, Ghent University, Ghent, Belgium

Search for other papers by Felien Laureys in
Current site
Google Scholar
PubMed
Close
,
Nikki RommersDepartment of Movement and Sports Sciences, Vrije Universiteit Brussel, Brussels, Belgium

Search for other papers by Nikki Rommers in
Current site
Google Scholar
PubMed
Close
,
Johan PionDepartment of Movement and Sport Sciences, Ghent University, Ghent, Belgium
Sport and Exercise Studies, HAN University of Applied Sciences, Nijmegen, the Netherlands

Search for other papers by Johan Pion in
Current site
Google Scholar
PubMed
Close
,
Frederik J.A. DeconinckDepartment of Movement and Sport Sciences, Ghent University, Ghent, Belgium

Search for other papers by Frederik J.A. Deconinck in
Current site
Google Scholar
PubMed
Close
, and
Matthieu LenoirDepartment of Movement and Sport Sciences, Ghent University, Ghent, Belgium

Search for other papers by Matthieu Lenoir in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: To evaluate the predictive value of a (non-)sport-specific test battery on the future success of young cyclists, test scores were compared with competition performances 2–3 years later. Methods: Three motor coordination, 5 physical performance, and 2 cycling-specific measurements were collected in 111 U15 (13.0–14.9 y) and 67 U17 (15.0–16.9 y) male road cyclists. In addition, maturity status, relative age, and competition history were assessed. National and provincial competition results 2–3 years later, in the U17year2 and U19year2 categories, were submitted to 2 separate 4-stage hierarchical regressions. Results: The results of the model of the U15 group revealed that maturity, relative age, competition history, motor coordination, physical performance, and cycling-specific performance accounted for 22.6% of the variance in competitive success. For the U15 category, only maturity and motor coordination were significant predictors of competitive success in the U17year2 category. Maturity and motor coordination each uniquely explained ±5% of the variance. However, for the U17 group—neither motor coordination, physical performance, nor cycling-specific performance could predict competitive success in the U19year2 category. Conclusions: The current study underlines the importance of general motor coordination as a building block necessary for optimal development in youth cycling. However, considering the lack of predictive value from the U17 category onward, other features may determine further development of youth athletes. Nevertheless, it is questioned why athletes need to possess a minimum level of all physical, motor coordination, and cycling-specific characteristics to experience success and enjoyment in their sport.

Mostaert (mireille.mostaert@ugent.be) is corresponding author.

  • Collapse
  • Expand
  • 1.

    Bergeron MF, Mountjoy M, Armstrong N, et al. International Olympic committee consensus statement on youth athletic development. Br J Sports Med. 2015;49(13):843851. PubMed ID: 26084524 doi:10.1136/bjsports-2015-094962

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Vaeyens R, Güllich A, Warr CR, et al. Talent identification and promotion programmes of Olympic athletes. J Sports Sci. 2009;27(13):13671380. PubMed ID: 19787538 doi:10.1080/02640410903110974

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Gulbin J, Weissensteiner J, Oldenziel K, et al. Patterns of performance development in elite athletes. Eur J Sport Sci. 2013;13(6):605614. PubMed ID: 24251738 doi:10.1080/17461391.2012.756542

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Schumacher YO, Mroz R, Mueller P, et al. Success in elite cycling: a prospective and retrospective analysis of race results. J Sports Sci. 2006;24(11):11491156. PubMed ID: 17175613 doi:10.1080/02640410500457299

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Svendsen IS, Tønnesen E, Tjelta LI, et al. Training, performance and physiological predictors of a successful elite senior career in junior competitive road cyclists. Int J Sports Physiol Perform. 2018;13(10):12871292. doi:10.1123/ijspp.2017-0824.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Mostaert M, Vansteenkiste P, Pion J, et al. The importance of performance in competitions as an indicator of future success in cycling. Eur J Sport Sci. 2022;22(4):481490. PubMed ID: 33446072 doi:10.1080/17461391.2021.1877359

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Gallo G, Mostaert M, Faelli E, et al. Do race results in youth competitions predict future success as a road cyclist? A retrospective study in the Italian Cycling Federation. Int J Sports Physiol Perform. 2022;17(4):621626. PubMed ID: 35130509 doi:10.1123/ijspp.2021-0297

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Staff T, Gobet F, Parton A. Early specialization and critical periods in acquiring expertise: a comparison of traditional versus detection talent identification in team GB cycling at London 2012. J Mot Learn Dev. 2021;9(2):296312. doi:10.1123/jmld.2020-0039

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Phillips KE, Hopkins WG. Determinants of cycling performance: a review of the dimensions and features regulating performance in elite cycling competitions. Sports Med Open. 2020;6(1):118. doi:10.1186/s40798-020-00252-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Lucía A, Hoyos J, Chicharro JL. Physiology of professional road cycling. Sports Med. 2001;31(5):325337. PubMed ID: 11347684

  • 11.

    Perez-Landaluce J, Fernandez-Garcia B, Rodriguez-Alonso M, et al. Physiological differences and rating of perceived exertion (RPE) in professional, amateur and young cyclists. J Sports Med Phys Fitness. 2002;42(4):389395. PubMed ID: 12391431

    • Search Google Scholar
    • Export Citation
  • 12.

    Atkinson G, Davison R, Jeukendrup A, et al. Science and cycling: current knowledge and future directions for research. J Sports Sci. 2003;21(9):767787. PubMed ID: 14579871 doi:10.1080/0264041031000102097

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Van Schuylenbergh R, Eynde BV, Hespel P. Correlations between lactate and ventilatory thresholds and the maximal lactate steady state in elite cyclists. Int J Sports Med. 2004;25(06):403408. doi:10.1055/s-2004-819942

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Aagaard P, Andersen J, Bennekou M, et al. Effects of resistance training on endurance capacity and muscle fiber composition in young top-level cyclists. Scand J Med Sci Sports. 2011;21(6):e298e307. PubMed ID: 21362056 doi:10.1111/j.1600-0838.2010.01283.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Rodríguez-Marroyo JA, Pernía R, Cejuela R, et al. Exercise intensity and load during different races in youth and junior cyclists. J Strength Cond Res. 2011;25(2):511519. PubMed ID: 20224447 doi:10.1519/JSC.0b013e3181bf4426

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Menaspa P, Rampinini E, Bosio A, et al. Physiological and anthropometric characteristics of junior cyclists of different specialties and performance levels. Scand J Med Sci Sports. 2012;22(3):392398. doi:10.1111/j.1600-0838.2010.01168.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Sanders D, Abt G, Hesselink MK, et al. Methods of monitoring training load and their relationships to changes in fitness and performance in competitive road cyclists. Int J Sports Physiol Perform. 2017;12(5):668675. PubMed ID: 28095061 doi:10.1123/ijspp.2016-0454

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Van Erp T, Sanders D. Demands of professional cycling races: influence of race category and result. Eur J Sport Sci. 2020;21(5):666677. PubMed ID: 32584197 doi:10.1080/17461391.2020.1788651

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Gallo G, Filipas L, Tornaghi M, et al. Thresholds power profiles and performance in youth road cycling. Int J Sports Physiol Perform. 2021;16(7):10491051. PubMed ID: 33647878 doi:10.1123/ijspp.2020-0579

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Menaspa P, Sassi A, Impellizzeri FM. Aerobic fitness variables do not predict the professional career of young cyclists. Med Sci Sports Exerc. 2010;42(4):805812 PubMed ID: 19952851

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Vandorpe B, Vandendriessche JB, Vaeyens R, et al. The value of a non-sport-specific motor test battery in predicting performance in young female gymnasts. J Sports Sci. 2012;30(5):497505. PubMed ID: 22263781 doi:10.1080/02640414.2012.654399

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Rommers N, Mostaert M, Goossens L, et al. Age and maturity related differences in motor coordination among male elite youth soccer players. J Sports Sci. 2019;37(2):196203. PubMed ID: 29913097 doi:10.1080/02640414.2018.1488454

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Pion J, Fransen J, Deprez D, et al. Stature and jumping height are required in female volleyball, but motor coordination is a key factor for future elite success. J Strength Cond Res. 2015;29(6):14801485. PubMed ID: 25436627 doi:10.1519/JSC.0000000000000778

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Leyhr D, Kelava A, Raabe J, et al. Longitudinal motor performance development in early adolescence and its relationship to adult success: an 8-year prospective study of highly talented soccer players. PLoS One. 2018;13(5):e0196324. PubMed ID: 29723200 doi:10.1371/journal.pone.0196324

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Mostaert M, Laureys F, Vansteenkiste P, et al. Discriminating performance profiles of cycling disciplines. Int J Sports Sci Coach. 2020;16(1):110122. doi:10.1177/1747954120948146

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Pion J. The Flemish Sports Compass: From Sports Orientation to Elite Performance Prediction. Faculty of Medicine and Health Sciences, Ghent University; 2015.

    • Search Google Scholar
    • Export Citation
  • 27.

    Cumming SP, Searle C, Hemsley JK, et al. Biological maturation, relative age and self-regulation in male professional academy soccer players: a test of the underdog hypothesis. Psychol Sport Exerc. 2018;39:147153. doi:10.1016/j.psychsport.2018.08.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Malina RM, Rogol AD, Cumming SP, et al. Biological maturation of youth athletes: assessment and implications. Br J Sports Med. 2015;49(13):852859. PubMed ID: 26084525 doi:10.1136/bjsports-2015-094623

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Baker J, Schorer J, Cobley S. Relative age effects. Sportwissenschaft. 2010;40(1):2630. doi:10.1007/s12662-009-0095-2

  • 30.

    Malina RM, Bouchard C, Bar-Or O. Growth, Maturation, and Physical Activity. 2nd ed. Human Kinetics; 2004.

  • 31.

    Hollings SC, Hume PA, Hopkins WG. Relative-age effect on competition outcomes at the World Youth and World Junior Athletics Championships. Eur J Sport Sci. 2014;14(suppl 1):S456S461. doi:10.1080/17461391.2012.713007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Musch J, Grondin S. Unequal competition as an impediment to personal development: a review of the relative age effect in sport. Dev Rev. 2001;21(2):147167. doi:10.1006/drev.2000.0516

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Fransen J, Bush S, Woodcock S, et al. Improving the prediction of maturity from anthropometric variables using a maturity ratio. Pediatr Exerc Sci. 2018;30(2):296307. PubMed ID: 28605273 doi:10.1123/pes.2017-0009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Callens B. Wielerjaarboek. 2002–2011.

  • 35.

    Belgian Cycling. 2019. https://www.uitslagen.kbwb-rlvb.com/. Accessed December 2019.

  • 36.

    Kiphard EJ, Schilling F. Körperkoordinations Test für Kinder. In: Weinheim. Beltz Test GmbH; 1974.

  • 37.

    Vandorpe B, Vandendriessche J, Lefèvre J, et al. The Körperkoordinationstest für kinder: reference values and suitability for 6–12-year-old children in flanders. Scand J Med Sci Sports. 2011;21(3):378388. PubMed ID: 20136753 doi:10.1111/j.1600-0838.2009.01067.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Novak AR, Bennett KJ, Beavan A, et al. The applicability of a short form of the Körperkoordinationstest für Kinder for measuring motor competence in children aged 6 to 11 years. J Mot Learn Dev. 2017;5(2):227239. doi:10.1123/jmld.2016-0028

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Kiphard EJ, Schilling F. Körperkoordinationstest für kinder: KTK. Beltz-Test; 2007.

  • 40.

    Mostaert M, Coppens E, Laureys F, et al. Validation of a motor competence assessment tool for children and adolescents (KTK3+) with normative values for 6- to 19-year-olds. Front Physiol. 2021;12:652952. doi:10.3389/fphys.2021.652952

    • Search Google Scholar
    • Export Citation
  • 41.

    Council of Europe E. EUROFIT: Handbook for the EUROFIT Tests of Physical Fitness. Council of Europe. Committee for the Development of Sport; 1988.

    • Search Google Scholar
    • Export Citation
  • 42.

    Asplund C, Ross M. Core stability and bicycling. Curr Sports Med Rep. 2010;9(3):155160. PubMed ID: 20463499 doi:10.1249/JSR.0b013e3181de0f91

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Tong TK, Wu S, Nie J. Sport-specific endurance plank test for evaluation of global core muscle function. Phys Ther Sport. 2014;15(1):5863. doi:10.1016/j.ptsp.2013.03.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Matthys SP, Vaeyens R, Fransen J, et al. A longitudinal study of multidimensional performance characteristics related to physical capacities in youth handball. J Sports Sci. 2013;31(3):325334. PubMed ID: 23078540 doi:10.1080/02640414.2012.733819

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Jeong Y, Jung MJ. Application and interpretation of hierarchical multiple regression. Orthop Nurs. 2016;35(5):338341. PubMed ID: 27648796 doi:10.1097/NOR.0000000000000279

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Malina R, e Silva MC, Figueiredo A. Growth and maturity status of youth players. In: AM Williams (Ed.),  Science and Soccer. Routledge; 2013:319344.

    • Search Google Scholar
    • Export Citation
  • 47.

    Malina RM, Cumming SP, Rogol AD, et al. Bio-banding in youth sports: background, concept, and application. Sports Med. 2019;49(11):16711685. PubMed ID: 31429034 doi:10.1007/s40279-019-01166-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Helsen WF, Van Winckel J, Williams AM. The relative age effect in youth soccer across Europe. J Sports Sci. 2005;23(6):629636. PubMed ID: 16195011 doi:10.1080/02640410400021310

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Cobley S, Abbott S, Dogramaci S, et al. Transient relative age effects across annual age groups in national level Australian swimming. J Sci Med Sport. 2018;21(8):839845. PubMed ID: 29398369 doi:10.1016/j.jsams.2017.12.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Pion J, Lenoir M, Vandorpe B, et al. Talent in female gymnastics: a survival analysis based upon performance characteristics. Int J Sports Med. 2015;94(11):935940.

    • Search Google Scholar
    • Export Citation
  • 51.

    Mostaert M, Pion J, Lenoir M, et al. A retrospective analysis of the national youth teams in volleyball: were they always faster, taller, and stronger? J Strength Cond Res. 2020:17. doi:10.1519/jsc.0000000000003847

    • Search Google Scholar
    • Export Citation
  • 52.

    Höner O, Votteler A. Prognostic relevance of motor talent predictors in early adolescence: a group- and individual-based evaluation considering different levels of achievement in youth football. J Sports Sci. 2016;34(24):22692278. PubMed ID: 27148644 doi:10.1080/02640414.2016.1177658

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53.

    Philippaerts R, Coutts A, Vaeyens R. Physiological perspectives of the identification and development of talented performers in sport. In: Talent Identification and Development—The Search for Sporting Excellence. H&P Druck; 2008:4968.

    • Search Google Scholar
    • Export Citation
  • 54.

    Pearson D, Naughton GA, Torode M. Predictability of physiological testing and the role of maturation in talent identification for adolescent team sports. J Sci Med Sport. 2006;9(4):277287. PubMed ID: 16844415 doi:10.1016/j.jsams.2006.05.020

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55.

    Sattler T, Sekulic D, Hadzic V, et al. Vertical jumping tests in volleyball: reliability, validity, and playing-position specifics. J Strength Cond Res. 2012;26(6):15321538. PubMed ID: 21904238 doi:10.1519/JSC.0b013e318234e838

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56.

    Régnier G, Salmela J, Russell S. Talent detection and development in sport. In: Singer R, Murphey M, Tennant LK, eds. A Handbook of Research on Sports Psychology. Macmillan; 1993:290313.

    • Search Google Scholar
    • Export Citation
  • 57.

    Seefeldt V. Developmental motor patterns: implications for elementary school physical education. Psych Mot Behav Sport. 1980;36(6):314323.

    • Search Google Scholar
    • Export Citation
  • 58.

    Stodden DF, True LK, Langendorfer SJ, et al. Associations among selected motor skills and health-related fitness: indirect evidence for Seefeldt’s proficiency barrier in young adults? Res Q Exerc Sport. 2013;84(3):397403. PubMed ID: 24261019 doi:10.1080/02701367.2013.814910

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 59.

    De Meester A, Stodden D, Goodway J, et al. Identifying a motor proficiency barrier for meeting physical activity guidelines in children. J Sci Med Sport. 2018;21(1):5862. PubMed ID: 28595871 doi:10.1016/j.jsams.2017.05.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60.

    Côté J, Baker J, Abernethy B. Practice and play in the development of sport expertise. In: Handbook of Sport Psychology. 2007;184202.

  • 61.

    Baker J, Horton S. A review of primary and secondary influences on sport expertise. High Abil Stud. 2004;15(2):211228. doi:10.1080/1359813042000314781

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 62.

    Gagné F. The DMGT: changes within, beneath, and beyond. Talent Dev Excell. 2013;5(1):519.

All Time Past Year Past 30 Days
Abstract Views 2805 2805 142
Full Text Views 62 62 4
PDF Downloads 96 96 5