Four Weeks of Intensified Training Enhances On-Ice Intermittent Exercise Performance and Increases Maximal Oxygen Consumption of Youth National-Team Ice Hockey Players

Click name to view affiliation

Jan Sommer Jeppesen The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark

Search for other papers by Jan Sommer Jeppesen in
Current site
Google Scholar
PubMed
Close
,
Jeppe F. Vigh-Larsen Section of Sport Science, Department of Public Health, Aarhus University, Aarhus, Denmark

Search for other papers by Jeppe F. Vigh-Larsen in
Current site
Google Scholar
PubMed
Close
,
Mikkel S. Oxfeldt Section of Sport Science, Department of Public Health, Aarhus University, Aarhus, Denmark

Search for other papers by Mikkel S. Oxfeldt in
Current site
Google Scholar
PubMed
Close
,
Niklas M. Laustsen The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark

Search for other papers by Niklas M. Laustsen in
Current site
Google Scholar
PubMed
Close
,
Magni Mohr Department of Sports Science and Clinical Biomechanics, SDU Sport and Health Sciences Cluster (SHSC), University of Southern Denmark, Odense, Denmark
Centre of Health Sciences, Faculty of Health, University of the Faroe Islands, Tórshavn, Faroe Islands

Search for other papers by Magni Mohr in
Current site
Google Scholar
PubMed
Close
,
Jens Bangsbo The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark

Search for other papers by Jens Bangsbo in
Current site
Google Scholar
PubMed
Close
, and
Morten Hostrup The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark

Search for other papers by Morten Hostrup in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Purpose: We investigated whether 4 weeks of intensified training consisting of speed endurance training (SET) enhanced high-intensity exercise performance in youth national-team ice hockey players. Methods: Utilizing a randomized crossover design, we subjected 17 players to 4 weeks of SET, comprising 6 to 10 × 20 seconds at maximal effort (>95% maximum ice skating speed) with 120-second recovery performed 3 times weekly, or maintenance of regular training (control period). Before and after each period, players completed ice-hockey-specific tests on ice, including a Yo-Yo Intermittent Recovery Level 1 test, a 30-m sprint test, and an agility test. On a separate day, players were assessed for body composition with dual-energy X-ray absorptiometry and performed countermovement jump, maximal voluntary isometric knee extensor contraction, a 15-second maximal sprint test, and a submaximal and incremental test on a bike ergometer in which pulmonary oxygen consumption was determined. Results: Yo-Yo Intermittent Recovery Level 1 test performance increased (P < .001) by 14% (95% CI, 201–496 m) during the SET period. Maximal pulmonary oxygen consumption (P < .05) and time to exhaustion (P < .05) were 4.8% and 6.5% higher, respectively, after the SET period than before. Fat-free mass increased (P < .01) during the SET period by 1.7 kg (95% CI, 1.0–2.5), whereas fat mass remained unchanged. These effects were superior to the control period. Conclusions: These findings underpin the effectiveness of SET for improving on-ice high-intensity performance and highlight that elite ice hockey players can benefit from implementing SET.

Hostrup (mhostrup@nexs.ku.dk) is corresponding author.

  • Collapse
  • Expand
  • 1.

    Cox MH, Miles DS, Verde TJ, Rhodes EC. Applied physiology of ice hockey. Sports Med. 1995;19(3):184201. PubMed ID: 7784758 doi:10.2165/00007256-199519030-00004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Lignell E, Fransson D, Krustrup P, Mohr M. Analysis of high-intensity skating in top-class ice hockey match-play in relation to training status and muscle damage. J Strength Cond Res. 2018;32(5):13031310. PubMed ID: 28557852 doi:10.1519/JSC.0000000000001999

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Vigh-Larsen JF, Beck JH, Daasbjerg A, et al. Fitness characteristics of elite and subelite male ice hockey players: a cross-sectional study. J Strength Cond Res. 2019;33(9):23522360. PubMed ID: 31343551 doi:10.1519/JSC.0000000000003285

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Burr JF, Jamnik RK, Baker J, Macpherson A, Gledhill N, McGuire EJ. Relationship of physical fitness test results and hockey playing potential in elite-level ice hockey players. J Strength Cond Res. 2008;22(5):15351543. PubMed ID: 18714234 doi:10.1519/JSC.0b013e318181ac20

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Vescovi JD, Murray TM, Fiala KA, VanHeest JL. Off-ice performance and draft status of elite ice hockey players. Int J Sports Physiol Perform. 2006;1(3):207221. PubMed ID: 19116435 doi:10.1123/ijspp.1.3.207

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Vigh-Larsen JF, Ermidis G, Rago V, et al. Muscle metabolism and fatigue during simulated ice hockey match-play in elite players. Med Sci Sports Exerc. 2020;52(10):21622171. PubMed ID: 32496739 doi:10.1249/MSS.0000000000002370

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Hostrup M, Gunnarsson TP, Fiorenza M, et al. In-season adaptations to intense intermittent training and sprint interval training in sub-elite football players. Scand J Med Sci Sports. 2019;29(5):669677. PubMed ID: 30676666 doi:10.1111/sms.13395

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Hostrup M, Bangsbo J. Limitations in intense exercise performance of athletes—effect of speed endurance training on ion handling and fatigue development. J Physiol. 2017;595(9):28972913. PubMed ID: 27673449 doi:10.1113/JP273218

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Buchheit M, Mendez-Villanueva A, Quod M, Quesnel T, Ahmaidi S. Improving acceleration and repeated sprint ability in well-trained adolescent handball players: speed versus sprint interval training. Int J Sports Physiol Perform. 2010;5(2):152164. PubMed ID: 20625188 doi:10.1123/ijspp.5.2.152

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Laursen PB. Training for intense exercise performance: high-intensity or high-volume training? Scand J Med Sci Sports. 2010;20(suppl 2):110. doi:https://doi.org/10.1111/j.1600-0838.2010.01184.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Jeukendrup A, Hesselink M, Snyder A, Kuipers H, Keizer H. Physiological changes in male competitive cyclists after two weeks of intensified training. Int J Sports Med. 1992;13(07):534541. doi:10.1055/s-2007-1021312

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Paul DJ, Marques JB, Nassis GP. The effect of a concentrated period of soccer-specific fitness training with small-sided games on physical fitness in youth players. J Sports Med Phys Fitness. 2019;59(6):962968. PubMed ID: 29952179 doi:10.23736/S0022-4707.18.08547-X

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Nyberg M, Fiorenza M, Lund A, et al. Adaptations to speed endurance training in highly trained soccer players. Med Sci Sports Exerc. 2016;48(7):13551364. PubMed ID: 26885636 doi:10.1249/MSS.0000000000000900

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Hostrup M, Cairns SP, Bangsbo J. Muscle ionic shifts during exercise: implications for fatigue and exercise performance. Compr Physiol. 2021;11(3):18951959. PubMed ID: 34190344 doi:10.1002/cphy.c190024

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Iaia FM, Bangsbo J. Speed endurance training is a powerful stimulus for physiological adaptations and performance improvements of athletes. Scand J Med Sci Sports. 2010;20(20):1123. doi:10.1111/j.1600-0838.2010.01193.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Janot JM, Beltz NM, Dalleck LD. Multiple off-ice performance variables predict on-ice skating performance in male and female division III ice hockey players. J Sports Sci Med. 2015;14(3):522529. PubMed ID: 26336338

    • Search Google Scholar
    • Export Citation
  • 17.

    Hajek F, Keller M, Taube W, von Duvillard SP, Bell JW, Wagner H. Testing-specific skating performance in ice hockey. J Strength Cond Res. 2020;35(suppl 1):S70S75. doi:10.1519/JSC.0000000000003475

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P. Increased rate of force development and neural drive of human skeletal muscle following resistance training. J Appl Physiol. 2002;93(4):13181326. doi:10.1152/japplphysiol.00283.2002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Jeukendrup AE, Wallis GA. Measurement of substrate oxidation during exercise by means of gas exchange measurements. Int J Sports Med. 2005;26(suppl 1):S28S37. doi:10.1055/s-2004-830512

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Cnaan A, Laird NM, Slasor P. Using the general linear mixed model to analyse unbalanced repeated measures and longitudinal data. Stat Med. 1997;16(20):23492380. PubMed ID: 9351170 doi:10.1002/(SICI)1097-0258(19971030)16:20%2C2349::AID-SIM667%2E3.0.CO;2-E

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Vigh-Larsen JF, Haverinen MT, Panduro J, et al. On-ice and off-ice fitness profiles of elite and u20 male ice hockey players of two different national standards. J Strength Cond Res. 2020;34(12):33693376. PubMed ID: 33009345 doi:10.1519/JSC.0000000000003836

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Brocherie F, Girard O, Millet GP. Updated analysis of changes in locomotor activities across periods in an international ice hockey game. Biol Sport. 2018;35(3):261267. PubMed ID: 30449944 doi:10.5114/biolsport.2018.77826

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Peterson BJ, Fitzgerald JS, Dietz CC, et al. Division I hockey players generate more power than division III players during on- and off-ice performance tests. J Strength Cond Res. 2015;29(5):11911196. PubMed ID: 25436625 doi:10.1519/JSC.0000000000000754

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Boland M, Delude K, Miele EM. Relationship between physiological off-ice testing, on-ice skating, and game performance in division I female ice hockey players. J Strength Cond Res. 2019;33(6):16191628. PubMed ID: 29016475 doi:10.1519/JSC.0000000000002265

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Bangsbo J, Iaia FM, Krustrup P. The yo-yo intermittent recovery test: a useful tool for evaluation of physical performance in intermittent sports. Sports Med. 2008;38(1):3751. PubMed ID: 18081366 doi:10.2165/00007256-200838010-00004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Gunnarsson TP, Christensen PM, Holse K, Christiansen D, Bangsbo J. Effect of additional speed endurance training on performance and muscle adaptations. Med Sci Sports Exerc. 2012;44(10):19421948. PubMed ID: 22617392 doi:10.1249/MSS.0b013e31825ca446

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Bangsbo J. Performance in sports—with specific emphasis on the effect of intensified training. Scand J Med Sci Sports. 2015;25(25):8899. doi:10.1111/sms.12605

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Mohr M, Krustrup P, Nielsen JJ, et al. Effect of two different intense training regimens on skeletal muscle ion transport proteins and fatigue development. Am J Physiol Regul Integr Comp Physiol. 2007;292(4):R1594R1602. PubMed ID: 17194727 doi:10.1152/ajpregu.00251.2006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Twist P, Rhodes T. A physiological analysis of ice hockey positions. Natl Strength Cond Assoc J. 1993;15:4446.

  • 30.

    Hostrup M, Onslev J, Jacobson GA, Wilson R, Bangsbo J. Chronic β2-adrenoceptor agonist treatment alters muscle proteome and functional adaptations induced by high intensity training in young men. J Physiol. 2018;596(2):231252. PubMed ID: 28983994 doi:10.1113/JP274970

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Juel C, Klarskov C, Nielsen JJ, Krustrup P, Mohr M, Bangsbo J. Effect of high-intensity intermittent training on lactate and H+ release from human skeletal muscle. Am J Physiol Endocrinol Metab. 2004;286(2):E245E251. PubMed ID: 14559724 doi:10.1152/ajpendo.00303.2003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Tavi P, Westerblad H. The role of in vivo Ca2+ signals acting on Ca2+–calmodulin-dependent proteins for skeletal muscle plasticity. J Physiol. 2011;589(21):50215031. PubMed ID: 21911615 doi:10.1113/jphysiol.2011.212860

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Delisle-Houde P, Reid RER, Insogna JA, Chiarlitti NA, Andersen RE. Seasonal changes in physiological responses and body composition during a competitive season in male and female elite collegiate ice hockey players. J Strength Cond Res. 2019;33(8):21622169. PubMed ID: 31344012 doi:10.1519/JSC.0000000000002338

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Green HJ, Batada A, Cole B, et al. Cellular responses in skeletal muscle to a season of ice hockey. Appl Physiol Nutr Metab. 2010;35(5):657670. PubMed ID: 20962922 doi:10.1139/H10-060

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Iaia FM, Fiorenza M, Perri E, Alberti G, Millet GP, Bangsbo J. The effect of two speed endurance training regimes on performance of soccer players. PLoS One. 2015;10(9):e0138096. PubMed ID: 26394225 doi:10.1371/journal.pone.0138096

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Mohr M, Krustrup P. Comparison between two types of anaerobic speed endurance training in competitive soccer players. J Hum Kinet. 2016;51(1):183192. PubMed ID: 28149381 doi:10.1515/hukin-2015-0181

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Wells C, Edwards A, Fysh M, Drust B. Effects of high-intensity running training on soccer-specific fitness in professional male players. Appl Physiol Nutr Metab. 2014;39(7):763769. PubMed ID: 24971676 doi:10.1139/apnm-2013-0199

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Iaia FM, Thomassen M, Kolding H, et al. Reduced volume but increased training intensity elevates muscle Na+–K+ pump α1-subunit and NHE1 expression as well as short-term work capacity in humans. Am J Physiol Regul Integr Comp Physiol. 2008;294(3):R966R974. PubMed ID: 18094063 doi:10.1152/ajpregu.00666.2007

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2642 1169 48
Full Text Views 157 87 7
PDF Downloads 181 76 8