Field-Derived Maximal Power Output in Cycling: An Accurate Indicator of Maximal Performance Capacity?

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Jesús G. PallaresFaculty of Sport Sciences, Human Performance and Sports Science Laboratory, University of Murcia, Murcia, Spain

Search for other papers by Jesús G. Pallares in
Current site
Google Scholar
PubMed
Close
,
Alejandro Hernández-BelmonteFaculty of Sport Sciences, Human Performance and Sports Science Laboratory, University of Murcia, Murcia, Spain

Search for other papers by Alejandro Hernández-Belmonte in
Current site
Google Scholar
PubMed
Close
,
Pedro L. ValenzuelaPhysical Activity and Health Research Group (PaHerg), Research Institute of Hospital 12 de Octubre (imas12), Madrid, Spain

Search for other papers by Pedro L. Valenzuela in
Current site
Google Scholar
PubMed
Close
,
Xabier MurielFaculty of Sport Sciences, Human Performance and Sports Science Laboratory, University of Murcia, Murcia, Spain

Search for other papers by Xabier Muriel in
Current site
Google Scholar
PubMed
Close
,
Manuel Mateo-MarchSport Science Department, Miguel Hernández University of Elche, Elche, Spain
Faculty of Sport Sciences, European University of Madrid, Madrid, Spain

Search for other papers by Manuel Mateo-March in
Current site
Google Scholar
PubMed
Close
,
David Barranco-GilFaculty of Sport Sciences, European University of Madrid, Madrid, Spain

Search for other papers by David Barranco-Gil in
Current site
Google Scholar
PubMed
Close
*
, and
Alejandro LuciaPhysical Activity and Health Research Group (PaHerg), Research Institute of Hospital 12 de Octubre (imas12), Madrid, Spain
Faculty of Sport Sciences, European University of Madrid, Madrid, Spain

Search for other papers by Alejandro Lucia in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: To determine the validity of field-derived mean maximum power (MMP) values for monitoring maximal cycling endurance performance. Methods: Twenty-seven male professional cyclists performed 3 timed trials (TTs) of 1-, 5-, and 20-minute duration that were used as the gold standard reference. Field-based power output data (3336 files; 124 [25] per cyclist) were registered during the preparatory (60 d pre-TT, including training data only) and specific period of the season (60 d post-TT, including both training and competitions). Comparisons were made between TT performance (mean power output) and MMP values obtained for efforts of the same duration as TT (MMP of 1-, 5-, and 20-min duration). The authors also compared TT- and MMP-derived values of critical power (CP) and anaerobic work capacity. Results: A large correlation (P < .001, r > .65) was found between MMP and TT performance regardless of the effort duration or season period. However, considerable differences (P < .05, standard error of measurement [SEM]  > 5%) were found between MMP and TT values for all effort durations in the preparatory period, as well as for the derived CP and anaerobic work capacity. Significant differences were also found between MMP and TT of 1 minute in the specific period, as well as for anaerobic work capacity, yet with no differences for MMP of 5- and 20-minute duration or the derived CP (P > .05, SEM < 5%). Conclusion: MMP values (for efforts ≥5 min) and the associated CP obtained from both training sessions and competitions can be considered overall accurate indicators of the cyclist’s maximal capabilities, but specific tests might be necessary for shorter efforts or when considering training sessions only.

Barranco-Gil (david.barranco@universidadeuropea.es) is corresponding author.

  • Collapse
  • Expand
  • 1.

    Passfield L, Hopker JG, Jobson S, Friel D, Zabala M. Knowledge is power: issues of measuring training and performance in cycling. J Sports Sci. 2017;35(14):14261434. PubMed ID: 27686573 doi:10.1080/02640414.2016.1215504

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Pinot J, Grappe F. The record power profile to assess performance in elite cyclists. Int J Sports Med. 2011;32(11):839844. PubMed ID: 22052032 doi:10.1055/s-0031-1279773

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Valenzuela PL, Muriel X, Van Erp T, et al. The record power profile of male professional cyclists: normative values obtained from a large database. Int J Sport Physiol Perform. 2022;17(5):701710. doi:10.1123/ijspp.2021-0263

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Karsten B, Jobson SA, Hopker J, Stevens L, Beedie C. Validity and reliability of critical power field testing. Eur J Appl Physiol. 2015;115(1):197204. PubMed ID: 25260244 doi:10.1007/s00421-014-3001-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Jones AM, Wilkerson DP, DiMenna F, Fulford J, Poole DC. Muscle metabolic responses to exercise above and below the “critical power” assessed using 31P-MRS. AJP Regul Integr Comp Physiol. 2008;294(2):R585R593. doi:10.1152/ajpregu.00731.2007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Chorley A, Lamb KL. The application of critical power, the work capacity above critical power (W´), and its reconstitution: a narrative review of current evidence and implications for cycling training prescription. Sports. 2020;8(9):12324. doi:10.3390/sports8090123

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Quod MJ, Martin DT, Martin JC, Laursen PB. The power profile predicts road cycling MMP. Int J Sports Med. 2010;31(6):397401. PubMed ID: 20301046 doi:10.1055/s-0030-1247528

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Leo P, Spragg J, Mujika I, Menz V, Lawley JS. Power profiling in U23 professional cyclists during a competitive season. Int J Sports Physiol Perform. 2021;16(6):881889. PubMed ID: 33607626 doi:10.1123/ijspp.2020-0200

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Mateo-March M, Valenzuela PL, Muriel X, et al. The record power profile of male professional cyclists: fatigue matters. Int J Sports Physiol Perform. 2022;17(6):926931. doi:10.1123/ijspp.2021-0403

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Valenzuela PL, Mateo-March M, Zabala M, et al. Ambient temperature and field-based cycling performance: insights from male and female professional cyclists. Int J Sports Physiol Perform. 2022;1:15. doi:10.1123/ijspp.2021-0508

    • Search Google Scholar
    • Export Citation
  • 11.

    Mateo-March M, Muriel X, Valenzuela PL, et al. Altitude and endurance performance in altitude natives versus lowlanders. Med Sci Sport Exerc. 2022;54(7):12181224. doi:10.1249/MSS.0000000000002890

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    van Erp T, Lamberts RP, Sanders D. Power profile of top 5 results in world tour cycling races. Int J Sports Physiol Perform. 2021;17(2):203209. doi:10.1123/ijspp.2021-0081

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Leo P, Spragg J, Simon D, Lawley JS, Mujika I. Training characteristics and power profile of professional U23 cyclists throughout a competitive season. Sports. 2020;8(12):167. doi:10.3390/sports8120167

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Valenzuela PL, Alejo LB, Montalvo-Pérez A, et al. Relationship between critical power and different lactate threshold markers in recreational cyclists. Front Physiol. 2021;12:828. doi:10.3389/fphys.2021.676484

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Galbraith A, Hopker J, Lelliott S, Diddams L, Passfield L. A single-visit field test of critical speed. Int J Sport Physiol Perform. 2014;9(6):931935. https://www.cochranelibrary.com/central/doi/10.1002/central/CN-01787161/full

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Karsten B, Petrigna L, Klose A, Bianco A, Townsend N, Triska C. Relationship between the critical power test and a 20-min functional threshold power test in cycling. Front Physiol. 2021;11(January):18. doi:10.3389/fphys.2020.613151

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Triska C, Tschan H, Tazreiter G, Nimmerichter A. Critical power in laboratory and field conditions using single-visit maximal effort trials. Int J Sports Med. 2015;36(13):10631068. PubMed ID: 26258826 doi:10.1055/s-0035-1549958

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Mattioni Maturana F, Fontana FY, Pogliaghi S, Passfield L, Murias JM. Critical power: how different protocols and models affect its determination. J Sci Med Sport. 2018;21(7):742747. doi:10.1016/j.jsams.2017.11.015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Pallarés JG, Lillo-Bevia JR, Moran-Navarro R, Cerezuela-Espejo V, Mora-Rodriguez R. Time to exhaustion during cycling is not well predicted by critical power calculations. Appl Physiol Nutr Metab. 2020;45(7):753760. PubMed ID: 31935109 doi:10.1139/apnm-2019-0637

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Atkinson G, Nevill AM. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med. 1998;26(4):217238. doi:10.2165/00007256-199826040-00002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Hopkins WG. Measures of reliability in sports medicine and science. Sports Med. 2000;30(5):375381. doi:10.2165/00007256-200030050-00006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Hopkins W, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):312. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Sanders D, van Erp T. The physical demands and power profile of professional men’s cycling races: an updated review. Int J Sports Physiol Perform. 2021;16(1):312. PubMed ID: 33271501 doi:10.1123/ijspp.2020-0508

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Leo P, Spragg J, Podlogar T, Lawley JS, Mujika I. Power profiling and the power-duration relationship in cycling: a narrative review. Eur J Appl Physiol. 2022;122(2):301316. PubMed ID: 34708276 doi:10.1007/s00421-021-04833-y

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3121 3121 165
Full Text Views 69 69 3
PDF Downloads 108 108 4