Physiological Responses and Performance During a 3-Minute Cycle Time Trial: Standard Paced Versus All-Out Paced

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Florian DoblerLaboratory for Motion Analysis, Department of Pediatric Orthopedics, Children’s Hospital of Eastern Switzerland, St. Gallen, Switzerland
Swedish Winter Sports Research Center, Department of Health Sciences, Mid Sweden University, Östersund, Sweden

Search for other papers by Florian Dobler in
Current site
Google Scholar
PubMed
Close
,
Philipp BachlSwedish Winter Sports Research Center, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
Department of Sport and Exercise Science, University of Salzburg, Salzburg, Austria

Search for other papers by Philipp Bachl in
Current site
Google Scholar
PubMed
Close
,
Thomas StögglDepartment of Sport and Exercise Science, University of Salzburg, Salzburg, Austria
Red Bull Athlete Performance Center, Salzburg, Austria

Search for other papers by Thomas Stöggl in
Current site
Google Scholar
PubMed
Close
, and
Erik P. AnderssonSwedish Winter Sports Research Center, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
School of Sport Sciences, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway

Search for other papers by Erik P. Andersson in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Purpose: To compare performance and physiological responses between a standard-paced 3-minute time trial (TTSP, ie, pacing based on normal intention) and a consistently all-out-paced 3-minute time trial (TTAOP). Methods: Sixteen well-trained male cyclists completed the TTSP and TTAOP, on separate days of testing, on a cycling ergometer with power output and respiratory variables measured. Time trials were preceded by 7 × 4-minute submaximal stages of increasing intensity with the linear relationship between power output and metabolic rate used to estimate the contribution from aerobic and anaerobic energy resources. The time course of anaerobic and aerobic contributions to power output was analyzed using statistical parametric mapping. Results: Mean power output was not different between the 2 pacing strategies (TTSP = 417 [43] W, TTAOP = 423 [41] W; P = 0.158). TTAOP resulted in higher peak power output (P < .001), mean ventilation rate (P < .001), mean heart rate (P = .044), peak accumulated anaerobically attributable work (P = .026), post-time-trial blood lactate concentration (P = .035), and rating of perceived exertion (P = .036). Statistical parametric mapping revealed a higher anaerobic contribution to power output during the first ∼30 seconds and a lower contribution between ∼90 and 170 seconds for TTAOP than TTSP. The aerobic contribution to power output was higher between ∼55 and 75 seconds for TTAOP. Conclusions: Although there was no significant difference in performance (ie, mean power output) between the 2 pacing strategies, differences were found in the distribution of anaerobically and aerobically attributable power output. This implies that athletes can pace a 3-minute maximal effort very differently but achieve the same result.

  • Collapse
  • Expand
  • 1.

    Foster C, Schrager M, Snyder AC, Thompson NN. Pacing strategy and athletic performance. Sports Med. 1994;17(2):7785. PubMed ID: 8171225 doi:10.2165/00007256-199417020-00001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Abbiss CR, Laursen PB. Describing and understanding pacing strategies during athletic competition. Sports Med. 2008;38(3):239252. PubMed ID: 18278984 doi:10.2165/00007256-200838030-00004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    de Koning JJ, Bobbert MF, Foster C. Determination of optimal pacing strategy in track cycling with an energy flow model. J Sci Med Sport. 1999;2(3):266277. PubMed ID: 10668763 doi:10.1016/S1440-2440(99)80178-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Van Ingen Schenau GJ, de Koning JJ, de Groot G. A simulation of speed skating performances based on a power equation. Med Sci Sports Exerc. 1990;22(5):718728. PubMed ID: 2233213 doi:10.1249/00005768-199010000-00026

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Foster C, Snyder AC, Thompson NN, Green MA, Foley M, Schrager M. Effect of pacing strategy on cycle time trial performance. Med Sci Sports Exerc. 1993;25(3):383388. PubMed ID: 8455455 doi:10.1249/00005768-199303000-00014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Gastin P, Costill D, Lawson D, Krzeminski K, McConell G. Accumulated oxygen deficit during supramaximal all-out and constant intensity exercise. Med Sci Sports Exerc. 1995;27(2):255263. PubMed ID: 7723650 doi:10.1249/00005768-199502000-00016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Hettinga FJ, de Koning JJ, Meijer E, Teunissen L, Foster C. Effect of pacing strategy on energy expenditure during a 1500-m cycling time trial. Med Sci Sports Exerc. 2007;39(12):22122218. PubMed ID: 18046193 doi:10.1249/mss.0b013e318156e8d4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Sanders D, van Erp T. The physical demands and power profile of professional men’s cycling races: an updated review. Int J Sports Physiol Perform. 2021;16(1):312. PubMed ID: 33271501 doi:10.1123/ijspp.2020-0508

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Hettinga FJ, Edwards AM, Hanley B. The science behind competition and winning in athletics: using world-level competition data to explore pacing and tactics. Front Sports Act Living. 2019;1:11. PubMed ID: 33344935 doi:10.3389/fspor.2019.00011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Joyner MJ, Coyle EF. Endurance exercise performance: the physiology of champions. J Physiol. 2008;586(1):3544. PubMed ID: 17901124 doi:10.1113/jphysiol.2007.143834

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Medbø J, Mohn A, Tabata I, Bahr R, Vaage O, Sejersted O. Anaerobic capacity determined by maximal accumulated O2 deficit. J Appl Physiol. 1988;64:5060. PubMed ID: 3356666 doi:10.1152/jappl.1988.64.1.50

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Burnley M, Doust JH, Vanhatalo A. A 3-min all-out test to determine peak oxygen uptake and the maximal steady state. Med Sci Sports Exerc. 2006;38(11):19952003. doi:10.1249/01.mss.0000232024.06114.a6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Tucker R, Noakes TD. The physiological regulation of pacing strategy during exercise: a critical review. Br J Sports Med. 2009;43(6):e1 . doi:10.1136/bjsm.2009.057562

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Bishop D, Bonetti D, Dawson B. The influence of pacing strategy on VO2 and supramaximal kayak performance. Med Sci Sports Exerc. 2002;34(6):10411047. PubMed ID: 12048335 doi:10.1097/00005768-200206000-00022

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Jones AM, Wilkerson DP, Vanhatalo A, Burnley M. Influence of pacing strategy on O2 uptake and exercise tolerance. Scand J Med Sci Sports. 2008;18(5):615626. PubMed ID: 18067518 doi:10.1111/j.1600-0838.2007.00725.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Bailey SJ, Vanhatalo A, Dimenna FJ, Wilkerson DP, Jones AM. Fast-start strategy improves VO2 kinetics and high-intensity exercise performance. Med Sci Sports Exerc. 2011;43(3):457467. PubMed ID: 20689463 doi:10.1249/MSS.0b013e3181ef3dce

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Hanon C, Thomas C. Effects of optimal pacing strategies for 400-, 800-, and 1500-m races on the VO2 response. J Sports Sci. 2011;29(9):905912. PubMed ID: 21547833 doi:10.1080/02640414.2011.562232

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    de Koning JJ, Noordhof DA, Uitslag TP, Galiart RE, Dodge C, Foster C. An approach to estimating gross efficiency during high-intensity exercise. Int J Sports Physiol Perform. 2013;8(6):682684. PubMed ID: 23006833 doi:10.1123/ijspp.8.6.682

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Weir JBV. New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol. 1949;109(1–2):19.

  • 20.

    Aisbett B, Le Rossignol P, McConell GK, Abbiss CR, Snow R. Effects of starting strategy on 5-min cycling time-trial performance. J Sports Sci. 2009;27(11):12011209. PubMed ID: 19724963 doi:10.1080/02640410903114372

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Hettinga FJ, de Koning JJ, Schmidt LJI, Wind NAC, MacIntosh BR, Foster C. Optimal pacing strategy: from theoretical modelling to reality in 1500-m speed skating. Br J Sports Med. 2011;45(1):3035. PubMed ID: 19850574 doi:10.1136/bjsm.2009.064774

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Losnegard T, Myklebust H, Hallén J. Anaerobic capacity as a determinant of performance in sprint skiing. Med Sci Sports Exerc. 2012;44(4):673681. PubMed ID: 21952633 doi:10.1249/MSS.0b013e3182388684

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Jeukendrup A, Saris WHM, Brouns F, Kester ADM. A new validated endurance performance test. Med Sci Sports Exerc. 1996;28(2):266270. PubMed ID: 8775164 doi:10.1097/00005768-199602000-00017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Nieman DC, Austin MD, Dew D, Utter AC. Validity of COSMED’s quark CPET mixing chamber system in evaluating energy metabolism during aerobic exercise in healthy male adults. Res Sports Med. 2013;21(2):136145. PubMed ID: 23541100 doi:10.1080/15438627.2012.757227

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Lidar J, Andersson E, Sundström D. Validity and reliability of hydraulic-analogy bioenergetic models in sprint roller skiing. Front Physiol. 2021;12:726414. doi:10.3389/fphys.2021.726414

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Piiper J, Spiller P. Repayment of O2 debt and resynthesis of high-energy phosphates in gastrocnemius muscle of the dog. J Appl Physiol. 1970;28(5):657662. PubMed ID: 5442264 doi:10.1152/jappl.1970.28.5.657

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Lakens D. Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Front Psychol. 2013;4:863. PubMed ID: 24324449 doi:10.3389/fpsyg.2013.00863

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Pataky T. One-dimensional statistical parametric mapping in Python. Comput Methods Biomech Biomed Engin. 2011;15(3):295301. PubMed ID: 21756121 doi:10.1080/10255842.2010.527837

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Aisbett B, Lerossignol P, Mcconell GK, Abbiss CR, Snow R. Influence of all-out and fast start on 5-min cycling time trial performance: Med Sci Sports Exerc. 2009;41(10):19651971. PubMed ID: 19727014 doi:10.1249/MSS.0b013e3181a2aa78

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    de Koning JJ, Foster C, Bakkum A, et al. Regulation of pacing strategy during athletic competition. PLoS One. 2011;6(1):e15863. PubMed ID: 21283744 doi:10.1371/journal.pone.0015863

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Stone MR, Thomas K, Wilkinson M, St Clair Gibson A, Thompson KG. Consistency of perceptual and metabolic responses to a laboratory-based simulated 4,000-m cycling time trial. Eur J Appl Physiol. 2011;111(8):18071813. PubMed ID: 21222130 doi:10.1007/s00421-010-1818-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Jones AM, Grassi B, Christensen PM, Krustrup P, Bangsbo J, Poole DC. Slow component of VO2 kinetics: mechanistic bases and practical applications. Med Sci Sports Exerc. 2011;43(11):20462062. PubMed ID: 21552162 doi:10.1249/MSS.0b013e31821fcfc1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Aaron EA, Seow KC, Johnson BD, Dempsey JA. Oxygen cost of exercise hyperpnea: implications for performance. J Appl Physiol. 1992;72(5):18181825. PubMed ID: 1601791 doi:10.1152/jappl.1992.72.5.1818

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Andersson E, Holmberg HC, Ørtenblad N, Björklund G. Metabolic responses and pacing strategies during successive sprint skiing time trials. Med Sci Sports Exerc. 2016;48(12):25442554. PubMed ID: 27414686 doi:10.1249/MSS.0000000000001037

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Foster C, de Koning JJ, Hettinga F, et al. Pattern of energy expenditure during simulated competition. Med Sci Sports Exerc. 2003;35(5):826831. PubMed ID: 12750593 doi:10.1249/01.MSS.0000065001.17658.68

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Bar-Or O, Dotan R, Inbar O, Rothstein A, Karlsson J, Tesch P. Anaerobic capacity and muscle fiber type distribution in man. Int J Sports Med. 1980;1(2):8285. doi:10.1055/s-2008-1034636

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Tucker R. The anticipatory regulation of performance: the physiological basis for pacing strategies and the development of a perception-based model for exercise performance. Br J Sports Med. 2009;43(6):392400. PubMed ID: 19224911 doi:10.1136/bjsm.2008.050799

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1316 1316 19
Full Text Views 64 64 4
PDF Downloads 88 88 6