Critical Power, Work Capacity, and Recovery Characteristics of Team-Pursuit Cyclists

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Charles F. PughTe Huataki Waiora School of Health, University of Waikato, Hamilton, New Zealand
Cycling New Zealand, Cambridge, New Zealand

Search for other papers by Charles F. Pugh in
Current site
Google Scholar
PubMed
Close
*
,
C. Martyn BeavenTe Huataki Waiora School of Health, University of Waikato, Hamilton, New Zealand

Search for other papers by C. Martyn Beaven in
Current site
Google Scholar
PubMed
Close
,
Richard A. FergusonSchool of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kindom

Search for other papers by Richard A. Ferguson in
Current site
Google Scholar
PubMed
Close
,
Matthew W. DrillerSport and Exercise Science, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC, Australia

Search for other papers by Matthew W. Driller in
Current site
Google Scholar
PubMed
Close
,
Craig D. PalmerCycling New Zealand, Cambridge, New Zealand

Search for other papers by Craig D. Palmer in
Current site
Google Scholar
PubMed
Close
, and
Carl D. PatonSchool of Health and Sport Science, Eastern Institute of Technology, Napier, New Zealand

Search for other papers by Carl D. Paton in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: Leading a 4-km team pursuit (TP) requires high-intensity efforts above critical power (CP) that deplete riders’ finite work capacity (W′), whereas riders following in the aerodynamic draft may experience some recovery due to reduced power demands. This study aimed to determine how rider ability and CP and W′ measures impact TP performance and the extent to which W′ can reconstitute during recovery positions in a TP race. Methods: Three TP teams, each consisting of 4 males, completed individual performance tests to determine their CP and W′. Teams were classified based on their performance level as international (INT), national (NAT), or regional (REG). Each team performed a TP on an indoor velodrome (INT: 3:49.9; NAT: 3:56.7; and REG: 4:05.4; min:s). Ergometer-based TP simulations with an open-ended interval to exhaustion were performed to measure individual ability to reconstitute W′ at 25 to 100 W below CP. Results: The INT team possessed higher CP (407 [4] W) than both NAT (381 [13] W) and REG (376 [15] W) (P < .05), whereas W′ was similar between teams (INT: 27.2 [2.8] kJ; NAT: 29.3 [2.4] kJ; and REG: 28.8 [1.6] kJ; P > .05). The INT team expended 104% (5%) of their initial W′ during the TP and possessed faster rates of recovery than NAT and REG at 25 and 50 W below CP (P < .05). Conclusions: The CP and rate of W′ reconstitution have a greater impact on TP performance than W′ magnitude and can differentiate TP performance level.

Pugh (cp115@students.waikato.ac.nz) is corresponding author.

  • Collapse
  • Expand
  • 1.

    Broker J, Kyle C, Burke E. Racing cyclist power requirements in the 4000-m individual and team pursuits. Med Sci Sports Exerc. 1999;31(11):16771685. PubMed ID: 10589873 doi:10.1097/00005768-199911000-00026

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Jeukendrup AE, Craig NP, Hawley JA. The bioenergetics of world class cycling. J Sci Med Sport. 2000;3(4):414433. PubMed ID: 11235007 doi:10.1016/S1440-2440(00)80008-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Tomlin DL, Wenger HA. The relationship between aerobic fitness and recovery from high intensity intermittent exercise. Sports Med. 2001;31(1):111. PubMed ID: 11219498 doi:10.2165/00007256-200131010-00001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Bartram JC, Thewlis D, Martin DT, Norton KI. Accuracy of W′ recovery kinetics in high performance cyclists-modeling intermittent work capacity. Int J Sports Physiol Perform. 2018;13(6):724728. PubMed ID: 29035607 doi:10.1123/ijspp.2017-0034

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Van Der Zwaard S, Van Der Laarse WJ, Weide G, et al. Critical determinants of combined sprint and endurance performance: an integrative analysis from muscle fiber to the human body. FASEB J. 2018;32(4):21102123. PubMed ID: 29217665 doi:10.1096/fj.201700827R

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Bartram JC, Thewlis D, Martin DT, Norton KI. Validating an adjustment to the intermittent critical power model for elite cyclists—Modeling W′ balance during world cup team pursuit performances. Int J Sports Physiol Perform. 2021;17(2):170175. doi:10.1123/ijspp.2020-0444

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Kirby BS, Clark DA, Bradley EM, Wilkins BW. The balance of muscle oxygen supply and demand reveals critical metabolic rate and predicts time to exhaustion. J Appl Physiol. 2021;130(6):19151927. doi:10.1152/japplphysiol.00058.2021

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Chorley A, Bott RP, Marwood S, Lamb KL. Physiological and anthropometric determinants of critical power, W′ and the reconstitution of W′ in trained and untrained male cyclists. Eur J Appl Physiol. 2020;120(11):23492359. PubMed ID: 32776219 doi:10.1007/s00421-020-04459-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Skiba PF, Chidnok W, Vanhatalo A, Jones AM. Modeling the expenditure and reconstitution of work capacity above critical power. Med Sci Sports Exerc. 2012;44(8):15261532. PubMed ID: 22382171 doi:10.1249/MSS.0b013e3182517a80

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Skiba PF, Fulford J, Clarke DC, Vanhatalo A, Jones AM. Intramuscular determinants of the ability to recover work capacity above critical power. Eur J Appl Physiol. 2015;115(4):703713. PubMed ID: 25425258 doi:10.1007/s00421-014-3050-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Chidnok W, Dimenna FJ, Bailey SJ, et al. Exercise tolerance in intermittent cycling: application of the critical power concept. Med Sci Sports Exerc. 2012;44(5):966976. PubMed ID: 22033512 doi:10.1249/MSS.0b013e31823ea28a

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Caen K, Bourgois J, Bourgois G, Van der Stede T, Vermeire K, Boone J. The reconstitution of W′ depends on both work and recovery characteristics. Med Sci Sports Exerc. 2019;51(8):17451751. PubMed ID: 31083026 doi:10.1249/MSS.0000000000001968

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Bartram J, Thewlis D, Martin DT, Norton KI. Predicting critical power in elite cyclists: questioning the validity of the 3-minute all-out test. Int J Sports Physiol Perform. 2017;12(6):783787. PubMed ID: 27834562 doi:10.1123/ijspp.2016-0376

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Poole DC. Dear editor-in-chief. Med Sci Sports Exerc. 1986;18(6):703. PubMed ID: 3784883 doi:10.1249/00005768-198612000-00017

  • 15.

    Wooles AL, Robinson AJ, Keen PS. A static method for obtaining a calibration factor for SRM bicycle power cranks. Sports Eng. 2005;8(3):137144. doi:10.1007/BF02844014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Skiba PF, Clarke DC. The W′ balance model: mathematical and methodological considerations. Int J Sports Physiol Perform. 2021;16(11):15611572. PubMed ID: 34686611 doi:10.1123/ijspp.2021-0205

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Karsten B, Jobson S, Hopker J, Jimenez A, Beedie C. High agreement between laboratory and field estimates of critical power in cycling. Int J Sports Med. 2014;35(4):298303. doi:10.1055/s-0033-1349844

    • Search Google Scholar
    • Export Citation
  • 18.

    Triska C, Karsten B, Heidegger B, et al. Reliability of the parameters of the power-duration relationship using maximal effort time-trials under laboratory conditions. PLoS One. 2017;12(12):e0189776. doi:10.1371/journal.pone.0189776

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Hopkins W, Marshall S, Batterham A, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):3. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Craig NP, Norton K, Bourdon P, et al. Aerobic and anaerobic indices contributing to track endurance cycling performance. Eur J Appl Physiol Occup Physiol. 1993;67(2):150158. PubMed ID: 8223521 doi:10.1007/BF00376659

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Mitchell EA, Martin NR, Bailey SJ, Ferguson RA. Critical power is positively related to skeletal muscle capillarity and type I muscle fibers in endurance-trained individuals. J Appl Physiol. 2018;125(3):737745. PubMed ID: 29878875 doi:10.1152/japplphysiol.01126.2017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Vanhatalo A, Black MI, DiMenna FJ, et al. The mechanistic bases of the power–time relationship: muscle metabolic responses and relationships to muscle fiber type. J Physiol. 2016;594(15):44074423. PubMed ID: 26940850 doi:10.1113/JP271879

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Iaia FM, Perez-Gomez J, Thomassen M, Nordsborg NB, Hellsten Y, Bangsbo J. Relationship between performance at different exercise intensities and skeletal muscle characteristics. J Appl Physiol. 2011;110(6):15551563. PubMed ID: 21436467 doi:10.1152/japplphysiol.00420.2010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Fitton B, Caddy O, Symons D. The impact of relative athlete characteristics on the drag reductions caused by drafting when cycling in a velodrome. Proc Inst Mech Eng P: J Sports Eng Technol. 2018;232(1):3949. doi:10.1177/1754337117692280

    • Search Google Scholar
    • Export Citation
  • 25.

    McCole S, Claney K, Conte J-C, Anderson R, Hagberg J. Energy expenditure during bicycling. J Appl Physiol. 1990;68(2):748753. PubMed ID: 2318782 doi:10.1152/jappl.1990.68.2.748

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Lievens M, Caen K, Bourgois J, Vermeire K, Boone J. W′reconstitution accelerates more with decreasing intensity in the heavy versus the moderate intensity domain. Med Sci Sports Exerc. 2021;53(6):12761284. PubMed ID: 33273271 doi:10.1249/MSS.0000000000002574

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Kyle CR, Burke E. Improving the racing bicycle. Mech Eng. 1984;106(9):3445.

  • 28.

    Withers R, Sherman W, Clark D, et al. Muscle metabolism during 30, 60 and 90 s of maximal cycling on an air-braked ergometer. Eur J Appl Physiol Occup Physiol. 1991;63(5):354362. PubMed ID: 1773812 doi:10.1007/BF00364462

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Caputo F, Denadai BS. The highest intensity and the shortest duration permitting attainment of maximal oxygen uptake during cycling: effects of different methods and aerobic fitness level. Eur J Appl Physiol. 2008;103(1):4757. PubMed ID: 18196264 doi:10.1007/s00421-008-0670-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Caen K, Bourgois G, Dauwe C, et al. W′ recovery kinetics following exhaustion: a two-phase exponential process influenced by aerobic fitness. Med Sci Sports Exerc. 2021;53(9):19111921. doi:10.1249/mss.0000000000002673

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2226 2226 142
Full Text Views 122 122 15
PDF Downloads 170 170 17