Isokinetic Leg-Press Power–Force–Velocity Profiles Are Reliable in Male and Female Elite Athletes but Not Interchangeable With Vertical Jump Profiles

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Isabella FesslDepartment of Sport and Exercise Science, University of Salzburg, Salzburg, Austria
Olympic Training Center Salzburg, Hallein-Rif, Austria

Search for other papers by Isabella Fessl in
Current site
Google Scholar
PubMed
Close
*
,
Johannes DirnbergerDepartment of Sport and Exercise Science, University of Salzburg, Salzburg, Austria
Olympic Training Center Salzburg, Hallein-Rif, Austria

Search for other papers by Johannes Dirnberger in
Current site
Google Scholar
PubMed
Close
,
Josef KröllDepartment of Sport and Exercise Science, University of Salzburg, Salzburg, Austria

Search for other papers by Josef Kröll in
Current site
Google Scholar
PubMed
Close
, and
Hans-Peter WiesingerDepartment of Sport and Exercise Science, University of Salzburg, Salzburg, Austria

Search for other papers by Hans-Peter Wiesinger in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: To evaluate the test–retest reliability of isokinetic leg-press power–force–velocity profile (P–F–v) parameters in male and female elite athletes. In addition, we determined the concurrent validity of leg-press against squat-jump (SJ) P–F–v parameters in task-experienced athletes. Methods: For test–retest reliability, 22 female and 23 male elite athletes (22.3 [4.1] y) with different sporting backgrounds conducted 3 isokinetic leg-press test sessions over 3 consecutive weeks. The testing consisted of bilateral leg extensions at isokinetic velocities of 0.1, 0.3, 0.7, and 1.2 m·s−1. For concurrent validity, 13 ski jumpers (20.3 [3.3] y) were recruited to perform the isokinetic leg-press and SJ P–F–v profile tests using 5 predefined loading conditions of 0%, +20%, +40%, +60%, and +80% of body mass. Results: Relative and absolute reliability were acceptable for female (intraclass correlation coefficient ≥.87 and coefficient of variation ≤6.5%) and male (intraclass correlation coefficient ≥.89 and coefficient of variation ≤5.7%) elite athletes. In contrast, concurrent validity was insufficient, with correlations ranging from −.26 to .69 between isokinetic and SJ P–F–v parameters. Conclusion: Irrespective of sex, isokinetic leg-press P–F–v profiles provide reliable parameters. However, leg-press P–F–v profiles do not serve as a valid substitute for SJ P–F–v profiles. P–F–v parameter magnitudes are likely dependent on the constraints of the tested movement and testing device.

  • Collapse
  • Expand
  • 1.

    García-Ramos A, Pérez-Castilla A, Jaric S. Optimisation of applied loads when using the two-point method for assessing the force-velocity relationship during vertical jumps. Sports Biomech. 2018;20(3):274289. PubMed ID: 30540216 doi:10.1080/14763141.2018.1545044

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Janicijevic D, Knezevic O, Mirkov D, et al. Assessment of the force-velocity relationship during vertical jumps: influence of the starting position, analysis procedures and number of loads. Eur J Sport Sci. 2020;20(5):614623. PubMed ID: 31314671 doi:10.1080/17461391.2019.1645886

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Morin JB, Samozino P. Interpreting power-force-velocity profiles for individualized and specific training. Int J Sports Physiol Perform. 2016;11(2):267272. PubMed ID: 26694658 doi:10.1123/ijspp.2015-0638

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Samozino P, Morin JB, Hintzy F, Belli A. A simple method for measuring force, velocity and power output during squat jump. J Biomech. 2008;41(14):29402945. PubMed ID: 18789803 doi:10.1016/j.jbiomech.2008.07.028

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Jimenez-Reyes P, Samozino P, Brughelli M, Morin JB. Effectiveness of an individualized training based on force-velocity profiling during jumping. Front Physiol. 2017;7:677. PubMed ID: 28119624 doi:10.3389/fphys.2016.00677

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Lindberg K, Solberg P, Bjørnsen T, et al. Force-velocity profiling in athletes: reliability and agreement across methods. PLoS One. 2021;16(2):e0245791. PubMed ID: 33524058 doi:10.1371/journal.pone.0245791

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Fessl I, Wiesinger H-P, Kröll J. Power-force-velocity profiling as a function of used loads and task experience. Int J Sports Physiol Perform. 2022;17(5):694700. PubMed ID: 35158325 doi:10.1123/ijspp.2021-0325

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Bosco C, Belli A, Astrua M, et al. A dynamometer for evaluation of dynamic muscle work. Eur J Appl Physiol Occup Physiol. 1995;70(5):379386. PubMed ID: 7671871 doi:10.1007/BF00618487

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Rahmani A, Viale F, Dalleau G, Lacour J-R. Force/velocity and power/velocity relationships in squat exercise. Eur J Appl Physiol. 2001;84(3):227232. PubMed ID: 11320640 doi:10.1007/PL00007956

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Vandewalle H, Peres G, Heller J, Panel J, Monod H. Force-velocity relationship and maximal power on a cycle ergometer. Eur J Appl Physiol Occup Physiol. 1987;56(6):650656. PubMed ID: 3678217 doi:10.1007/BF00424805

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Yamauchi J, Ishii N. Relations between force-velocity characteristics of the knee-hip extension movement and vertical jump performance. J Strength Cond Res. 2007;21(3):703709. PubMed ID: 17685704 doi:10.1519/r-20516.1

    • Search Google Scholar
    • Export Citation
  • 12.

    Bobbert M. Why is the force-velocity relationship in leg press tasks quasi-linear rather than hyperbolic? J Appl Physiol. 2012;112(12):19751983. PubMed ID: 22442026 doi:10.1152/japplphysiol.00787.2011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Valenzuela PL, Sánchez-Martínez G, Torrontegui E, Vázquez Carrión J, Montalvo Z, Haff G. Should we base training prescription on the force-velocity profile? Exploratory study of its between-day reliability and differences between methods. Int J Sports Physiol Perform. 2020;16(7):10011007. doi:10.1123/ijspp.2020-0308

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Padulo J, Migliaccio GM, Ardigo LP, Leban B, Cosso M, Samozino P. Lower limb force, velocity, power capabilities during leg press and squat movements. Int J Sports Med. 2017;38(14):10831089. PubMed ID: 29050041 doi:10.1055/s-0043-118341

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Kibele A. Possibilities and limitations in the biomechanical analysis of countermovement jumps: a methodological study. J Appl Biomech. 1998;14(1):105117. doi:10.1123/jab.14.1.105

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Hopkins WG. A socratic dialogue on comparison of measures. Sportscience. 2010;14:1521.

  • 17.

    Group ItSUSC. How can I compare regression coefficients between two groups? Published 2022. https://stats.oarc.ucla.edu/spss/faq/how-can-i-compare-regression-coefficients-between-two-groups/. Accessed March 29, 2022.

    • Search Google Scholar
    • Export Citation
  • 18.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Lawrence Erlbaum Associates; 1988.

  • 19.

    Hopkins WG. Spreadsheet for analysis of validity and reliability. Sportscience. 2015;19:3642.

  • 20.

    Hopkins WG, Schabort EJ, Hawley JA. Reliability of power in physical performance tests. Sports Med. 2001;31(3):211234. PubMed ID: 11286357 doi:10.2165/00007256-200131030-00005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Carmichael MA, Thomson RL, Moran LJ, Wycherley TP. The impact of menstrual cycle phase on athletes’ performance: a narrative review. Int J Environ Res Public Health. 2021;18(4):1667. PubMed ID: 33572406 doi:10.3390/ijerph18041667

    • Search Google Scholar
    • Export Citation
  • 22.

    Berz K, McCambridge T. Amenorrhea in the female athlete: what to do and when to worry. Pediatr Ann. 2016;45(3):e97e102. PubMed ID: 27031318 doi:10.3928/00904481-20160210-03

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Martin D, Sale C, Cooper SB, Elliott-Sale KJ. Period prevalence and perceived side effects of hormonal contraceptive use and the menstrual cycle in elite athletes. Int J Sports Physiol Perform. 2018;13(7):926932. PubMed ID: 29283683 doi:10.1123/ijspp.2017-0330

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Solli GS, Sandbakk SB, Noordhof DA, Ihalainen JK, Sandbakk Ø. Changes in self-reported physical fitness, performance, and side effects across the phases of the menstrual cycle among competitive endurance athletes. Int J Sports Physiol Perform. 2020;15(9):13241333. doi:10.1123/ijspp.2019-0616

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Saeterbakken AH, Stien N, Pedersen H, Andersen V. Core muscle activation in three lower extremity exercises with different stability requirements. J Strength Cond Res. 2022;36(2):304309. PubMed ID: 31895283 doi:10.1519/JSC.0000000000003465

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Jimenez-Reyes P, Samozino P, Pareja-Blanco F, et al. Validity of a simple method for measuring force-velocity-power profile in countermovement jump. Int J Sports Physiol Perform. 2017;12(1):3643. PubMed ID: 27002490 doi:10.1123/ijspp.2015-0484

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Jimenez-Reyes P, Samozino P, Morin J-B. Optimized training for jumping performance using the force-velocity imbalance: individual adaptation kinetics. PLoS one. 2019;14(5):e0216681. PubMed ID: 31091259 doi:10.1371/journal.pone.0216681

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Lindberg K, Solberg P, Rønnestad B, et al. Should we individualize training based on force‐velocity profiling to improve physical performance in athletes? Scand J Med Sci Sports. 2021; 31(12):21982210. PubMed ID: 34473848 doi:10.1111/sms.14044

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1185 1185 87
Full Text Views 60 60 3
PDF Downloads 88 88 6