Reliability of the 3-Component Model of Aerobic, Anaerobic Lactic, and Anaerobic Alactic Energy Distribution (PCr-LA-O2) for Energetic Profiling of Continuous and Intermittent Exercise

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Sebastian KaufmannCenter for Sports and Physical Education, Faculty of Human Sciences, Julius-Maximilians-University Wuerzburg, Wuerzburg, Germany

Search for other papers by Sebastian Kaufmann in
Current site
Google Scholar
PubMed
Close
*
,
Richard LatzelFaculty of Applied Healthcare Sciences, Deggendorf Institute of Technology, Deggendorf, Germany

Search for other papers by Richard Latzel in
Current site
Google Scholar
PubMed
Close
,
Ralph BenekeDepartment of Medicine, Training & Health, Institute of Sports Science, Philipps-University Marburg, Marburg, Germany

Search for other papers by Ralph Beneke in
Current site
Google Scholar
PubMed
Close
, and
Olaf HoosCenter for Sports and Physical Education, Faculty of Human Sciences, Julius-Maximilians-University Wuerzburg, Wuerzburg, Germany

Search for other papers by Olaf Hoos in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: To assess the test–retest reliability of the continuous (PCr-LA-O2) and intermittent (PCr-LA-O2int) version of the 3-component model of energy distribution in an applied setting. Methods: Sixteen male handball players (age 23 [3] y, height 185 [7] cm, weight 85 [14] kg) completed the 30–15 Intermittent Fitness Test (30–15IFT) twice. Performance was assessed by peak speed (speed of the last successfully completed stage of the 30–15IFT [VIFT], in kilometers per hour) and time to exhaustion (in seconds). Oxygen uptake (in milliliters per kilogram per minute) and blood lactate concentrations (in millimoles per liter) were obtained before, during, and until 15 minutes after exercise. Total metabolic energy (in joules per kilogram), total metabolic power (in watts per kilogram), and energy shares (in joules per kilogram and percentage) of the aerobic (energy contribution of the aerobic system [WAERint]), anaerobic lactic, and anaerobic alactic (anaerobic alactic energy [WPCrint]) systems were calculated using both model versions, respectively. Results: Test–retest reliability was very good for VIFT (limits of agreement [LoA]: −1.13 to 0.63 km·h−1, coefficient of variation [CV%] 1.68), time to exhaustion (LoA: −101 to 38 s, CV% 2.92), peak oxygen uptake (LoA: −2.68 to 4.04 mL·min−1·kg−1, CV% 1.48), and peak heart rate (−6.9 to 7.7 beats·min−1, CV% 1.1), but moderate for change in blood lactate concentration (LoA: −3.84 to 4.07 mmol·L−1, CV% 11.43). Reliability of the modeled total energy and its fractions were high for total metabolic energy (LoA: −1489 to 1177 J·kg−1, CV% 2.88), total metabolic power (LoA: −2.0 to 1.9 W·kg−1, CV% 3.58), contribution of aerobic (LoA: −1673 to 1283 J·kg−1, CV% 3.62), WAERint (LoA: −1760 to 2160 J·kg−1, CV% 6.04), and moderate for anaerobic alactic (LoA: −368 to 439 J·kg−1, CV% 14.85), WPCrint (LoA: −1707 to 988 J·kg−1, CV% 9.98), and energy share of anaerobic lactic concentration (LoA: −229 to 235 J·kg−1, CV% 11.43). Conclusion: Considering the inherent fluctuations of the underlying energetics, the reliabilities of both versions of the 3-component model of energy distribution are acceptable for applied settings.

  • Collapse
  • Expand
  • 1.

    Gastin PB. Energy system interaction and relative contribution during maximal exercise. Sports Med. 2001;31(10):725741. PubMed ID: 11547894 doi:10.2165/00007256-200131100-00003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Li Y, Niessen M, Chen X, Hartmann U. Method-induced differences of energy contributions in women’s kayaking. Int J Sports Physiol Perform. 2018;13(1):913. PubMed ID: 28338361 doi:10.1123/ijspp.2016-0491

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Scott CB. Contribution of blood lactate to the energy expenditure of weight training. J Strength Cond Res. 2006;20(2):404411. PubMed ID: 16686572 doi:10.1519/r-17495.1

    • Search Google Scholar
    • Export Citation
  • 4.

    Beneke R, Pollmann C, Bleif I, Leithauser RM, Hutler M. How anaerobic is the wingate anaerobic test for humans? Eur J Appl Physiol. 2002;87(4–5):388392. PubMed ID: 12172878 doi:10.1007/s00421-002-0622-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Artioli GG, Bertuzzi RC, Roschel H, Mendes SH, Lancha AH Jr, Franchini E. Determining the contribution of the energy systems during exercise. J Vis Exp. 2012;61:3413. PubMed ID: 22453254 doi:10.3791/3413

    • Search Google Scholar
    • Export Citation
  • 6.

    Di Prampero PE. Energetics of muscular exercise. Rev Physiol Biochem Pharmacol. 1981;89:143222. PubMed ID: 7015457 doi:10.1007/BFb0035266

  • 7.

    Hultman E, Bergström J, Anderson NM. Breakdown and resynthesis of phosphorylcreatine and adenosine triphosphate in connection with muscular work in man. Scand J Clin Lab Invest. 1967;19(1):5666. PubMed ID: 6031321 doi:10.3109/00365516709093481

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Mader A, Heck H. A theory of the metabolic origin of “anaerobic threshold.” Int J Sports Med. 1986;7(suppl 1):S45S65. PubMed ID: 3744647 doi:10.1055/s-2008-1025802

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Roberts A, Morton A. Total and alactic oxygen debts after supramaximal work. Eur J Appl Physiol Occup Physiol. 1978;38(4):281289. PubMed ID: 668682 doi:10.1007/BF00423111

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Knuttgen H. Oxygen debt after submaximal physical exercise. J Appl Physiol. 1970;29(5):651657. PubMed ID: 5474857 doi:10.1152/jappl.1970.29.5.651

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Davis P, Leithäuser RM, Beneke R. The energetics of semicontact 3×2-min amateur boxing. Int J Sports Physiol Perform. 2014;9(2):233239. PubMed ID: 24572964 doi:10.1123/ijspp.2013-0006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Guidetti L, Emerenziani GP, Gallotta MC, Da Silva SG, Baldari C. Energy cost and energy sources of a ballet dance exercise in female adolescents with different technical ability. Eur J Appl Physiol. 2008;103(3):315321. PubMed ID: 18340457 doi:10.1007/s00421-008-0705-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Latzel R, Hoos O, Stier S, et al. Energetic profile of the basketball exercise simulation test in junior elite players. Int J Sports Physiol Perform. 2018;13(6):810815. PubMed ID: 29182413 doi:10.1123/ijspp.2017-0174

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Zamparo P, Zadro I, Lazzer S, Beato M, Sepulcri L. Energetics of shuttle runs: the effects of distance and change of direction. Int J Sports Physiol Perform. 2014;9(6):10331039. PubMed ID: 24700201 doi:10.1123/ijspp.2013-0258

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Li Y, Niessen M, Chen X, Hartmann U. Overestimate of relative aerobic contribution with maximal accumulated oxygen deficit: a review. J Sports Med Phys Fitness. 2015;55(5):377382. PubMed ID: 25033069

    • Search Google Scholar
    • Export Citation
  • 16.

    Kaufmann S, Hoos O, Kuehl T, et al. Energetic profiles of the yo-yo intermittent recovery tests 1 and 2. Int J Sports Physiol Perform. 2020;15(10):14001405. PubMed ID: 32659742 doi:10.1123/ijspp.2019-0702

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Noordhof DA, De Koning JJ, Foster C. The maximal accumulated oxygen deficit method. Sports Med. 2010;40(4):285302. PubMed ID: 20364874 doi:10.2165/11530390-000000000-00000

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Di Prampero PE, Fusi S, Sepulcri L, Morin J, Belli A, Antonutto G. Sprint running: a new energetic approach. J Exp Biol. 2005;208(14):28092816. PubMed ID: 16000549 doi:10.1242/jeb.01700

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Vogler AJ, Rice AJ, Gore CJ. Validity and reliability of the Cortex MetaMax3B portable metabolic system. J Sports Sci. 2010;28(7):733742. PubMed ID: 20416553 doi:10.1080/02640410903582776

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Davison RR, Coleman D, Balmer J, et al. Assessment of blood lactate: practical evaluation of the biosen 5030 lactate analyzer. Med Sci Sports Exerc. 2000;32(1):243247. PubMed ID: 10647556 doi:10.1097/00005768-200001000-00036

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Bagger M, Petersen P, Pedersen P. Biological variation in variables associated with exercise training. Int J Sports Med. 2003;24(6):433440. PubMed ID: 12905092 doi:10.1055/s-2003-41180

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Mann TN, Lamberts RP, Lambert MI. Day-to-day variation in heart rate recovery and excess post-exercise oxygen consumption after a submaximal treadmill protocol. Int Sports Med J. 2014;15(4):352364.

    • Search Google Scholar
    • Export Citation
  • 23.

    Buchheit M. 30–15 Intermittent Fitness Test: un nouveau test de terrain spécifiquement dédié aux joueurs de sport collectif pour la détermination d’une vitesse maximale aérobie intermittente. Approches du Handball. 2005;87:2734.

    • Search Google Scholar
    • Export Citation
  • 24.

    Beneke R, Beyer T, Jachner C, Erasmus J, Hutler M. Energetics of karate kumite. Eur J Appl Physiol. 2004;92(4–5):518523. PubMed ID: 15138826 doi:10.1007/s00421-004-1073-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Di Prampero PE, Cerretelli P, Piiper J. Lactic acid formation in gastrocnemius muscle of the dog and its relation to O2 debt contraction. Respir Physiol. 1970;8(3):347353. PubMed ID: 5434417 doi:10.1016/0034-5687(70)90041-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Atkinson G, Nevill AM. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med. 1998;26(4):217238. PubMed ID: 9820922 doi:10.2165/00007256-199826040-00002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Thomas C, Dos’Santos T, Jones PA, Comfort P. Reliability of the 30–15 intermittent fitness test in semiprofessional soccer players. Int J Sports Physiol Perform. 2016;11(2):172175. PubMed ID: 26181081 doi:10.1123/ijspp.2015-0056

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Özyener F, Rossiter H, Ward S, Whipp B. Influence of exercise intensity on the on‐and off‐transient kinetics of pulmonary oxygen uptake in humans. J Physiol. 2001;533(3):891902. PubMed ID: 11410644 doi:10.1111/j.1469-7793.2001.t01-1-00891.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Doherty M, Smith PM, Schroder K. Reproducibility of the maximum accumulated oxygen deficit and run time to exhaustion during short-distance running. J Sports Sci. 2000;18(5):331338. PubMed ID: 10855679 doi:10.1080/026404100402395

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Pereira MA, Freedson P. Intraindividual variation of running economy in highly trained and moderately trained males. Int J Sports Med. 1997;18(2):118124. PubMed ID: 9081268 doi:10.1055/s-2007-972606

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Daniels J, Scardina N, Hayes J, Poley P. Variations in VO2 submax during treadmill running. Med Sci Sports Exerc. 1984;16(2):108.

  • 32.

    Carter H, Jones AM, Maxwell NS, Doust JH. The effect of interdian and diurnal variation on oxygen uptake kinetics during treadmill running. J Sports Sci. 2002;20(11):901909. PubMed ID: 12430991 doi:10.1080/026404102320761796

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Schantz P, Salier Eriksson J, Rosdahl H. The heart rate method for estimating oxygen uptake: analyses of reproducibility using a range of heart rates from commuter walking. Eur J Appl Physiol. 2019;119(11–12):26552671. PubMed ID: 31628539 doi:10.1007/s00421-019-04236-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Zagatto AM, Bertuzzi RC, Miyagi W, Padulo J, Papoti M. MAOD determined in a single supramaximal test: a study on the reliability and effects of supramaximal intensities. Int J Sports Med. 2016;37(9):700707. PubMed ID: 27176893 doi:10.1055/s-0042-104413

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Kilding A, Challis N, Winter E, Fysh M. Characterisation, asymmetry and reproducibility of on-and off-transient pulmonary oxygen uptake kinetics in endurance-trained runners. Eur J Appl Physiol. 2005;93(5–6):588597. PubMed ID: 15580521 doi:10.1007/s00421-004-1232-0

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1252 1252 112
Full Text Views 51 51 2
PDF Downloads 70 70 3