Association of Muscle Strength With Muscle Thickness and Motor Unit Firing Pattern of Vastus Lateralis Muscle in Youth Athletes

Click name to view affiliation

Akane Yoshimura Faculty of Education and Integrated Arts and Sciences, Waseda University, Tokyo, Japan
Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, Chukyo University, Aichi, Japan

Search for other papers by Akane Yoshimura in
Current site
Google Scholar
PubMed
Close
*
,
Shun Kunugi Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, Chukyo University, Aichi, Japan
Center for General Education, Aichi Institute of Technology, Aichi, Japan

Search for other papers by Shun Kunugi in
Current site
Google Scholar
PubMed
Close
,
Tetsuya Hirono Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, Chukyo University, Aichi, Japan

Search for other papers by Tetsuya Hirono in
Current site
Google Scholar
PubMed
Close
,
Hiroya Nojima Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, Chukyo University, Aichi, Japan

Search for other papers by Hiroya Nojima in
Current site
Google Scholar
PubMed
Close
,
Saeko Ueda Graduate School of Life Studies, Sugiyama Jogakuen University, Aichi, Japan

Search for other papers by Saeko Ueda in
Current site
Google Scholar
PubMed
Close
,
Aleš Holobar Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia

Search for other papers by Aleš Holobar in
Current site
Google Scholar
PubMed
Close
,
Yukiko Mita Department of Human Nutrition, School of Life Studies, Sugiyama Jogakuen University, Aichi, Japan

Search for other papers by Yukiko Mita in
Current site
Google Scholar
PubMed
Close
, and
Kohei Watanabe Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, Chukyo University, Aichi, Japan

Search for other papers by Kohei Watanabe in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: Contributions of neural and muscular factors to muscle strength change with growth, but such changes remain unclear in young populations. This study aimed to clarify the association between muscle strength and neural and muscular factors in youth athletes. Methods: Maximal voluntary contraction (MVC) during isometric knee extension, the motor unit firing rate (MUFR), and muscle thickness (MT) of the vastus lateralis were measured in 70 youth male soccer players (mean [SD]; chronological age = 16.3 [0.6] y, peak height velocity age = 13.1 [1.0] y). MUFR and MT were measured with high-density surface electromyography and ultrasonography, respectively. Results: For MUFR and MT, correlations with MVC were calculated and the values of different MVC groups were compared. A significant correlation between MVC and MT (r = .49, P < .01) was noted, but not MUFR (r = .03, P > .05). There was also no significant correlation between MT and MUFR (r = −.33, P > .05). In addition, comparison among groups (higher-/middle-/lower-strength groups) revealed that MT in the lower-strength group was significantly lower than in middle-and higher-strength groups (P < .01). Conclusion: In youth athletes, muscle strength is associated with muscular factors, rather than neural factors, and muscular and neural factors may independently contribute to muscle strength.

Yoshimura (ayoshimura@aoni.waseda.jp) is corresponding author.

  • Collapse
  • Expand
  • 1.

    Bergeron MF, Mountjoy M, Armstrong N, et al. International Olympic committee consensus statement on youth athletic development. Br J Sports Med. 2015;49(13):843851. PubMed ID: 26084524 doi:10.1136/bjsports-2015-094962

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Mountjoy M, Rhind DJ, Tiivas A, Leglise M. Safeguarding the child athlete in sport: a review, a framework and recommendations for the IOC youth athlete development model. Br J Sports Med. 2015;49(13):883886. PubMed ID: 26084527 doi:10.1136/bjsports-2015-094619

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Gillen ZM, Shoemaker ME, McKay BD, Bohannon NA, Gibson SM, Cramer JT. Muscle strength, size, and neuromuscular function before and during adolescence. Eur J Appl Physiol. 2019;119(7):16191632. PubMed ID: 31087141 doi:10.1007/s00421-019-04151-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Moritani T, deVries HA. Neural factors versus hypertrophy in the time course of muscle strength gain. Am J Phys Med. 1979;58(3):115130. PubMed ID: 453338

    • Search Google Scholar
    • Export Citation
  • 5.

    Moritani T, deVries HA. Potential for gross muscle hypertrophy in older men. J Gerontol. 1980;35(5):672682. PubMed ID: 7430562 doi:10.1093/geronj/35.5.672

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Watanabe K, Holobar A, Kouzaki M, Ogawa M, Akima H, Moritani T. Age-related changes in motor unit firing pattern of vastus lateralis muscle during low-moderate contraction. Age. 2016;38(3):48. doi:10.1007/s11357-016-9915-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Watanabe K, Kouzaki M, Ogawa M, Akima H, Moritani T. Relationships between muscle strength and multi-channel surface EMG parameters in eighty-eight elderly. Eur Rev Aging Phys Act. 2018;15(1):3. PubMed ID: 29682086 doi:10.1186/s11556-018-0192-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Kanehisa H, Ikegawa S, Tsunoda N, Fukunaga T. Strength and cross-sectional areas of reciprocal muscle groups in the upper arm and thigh during adolescence. Int J Sports Med. 1995;16(1):5460. PubMed ID: 7713632 doi:10.1055/s-2007-972964

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Tonson A, Ratel S, Le Fur Y, Cozzone P, Bendahan D. Effect of maturation on the relationship between muscle size and force production. Med Sci Sports Exerc. 2008;40(5):918925. PubMed ID: 18408605 doi:10.1249/MSS.0b013e3181641bed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Lloyd RS, Faigenbaum AD, Stone MH, et al. Position statement on youth resistance training: the 2014 international consensus. Br J Sports Med. 2014;48(7):498505. PubMed ID: 24055781 doi:10.1136/bjsports-2013-092952

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Radnor JM, Oliver JL, Waugh CM, Myer GD, Moore IS, Lloyd RS. The influence of growth and maturation on stretch-shortening cycle function in youth. Sports Med. 2018;48(1):5771. PubMed ID: 28900862 doi:10.1007/s40279-017-0785-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Watanabe K, Miyamoto T, Tanaka Y, Fukuda K, Moritani T. Type 2 diabetes mellitus patients manifest characteristic spatial EMG potential distribution pattern during sustained isometric contraction. Diabetes Res Clin Pract. 2012;97(3):468473. PubMed ID: 22483576 doi:10.1016/j.diabres.2012.03.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Holobar A, Farina D, Gazzoni M, Merletti R, Zazula D. Estimating motor unit discharge patterns from high-density surface electromyogram. Clin Neurophysiol. 2009;120(3):551562. PubMed ID: 19208498 doi:10.1016/j.clinph.2008.10.160

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Holobar A, Zazula D. Correlation-based decomposition of surface electromyograms at low contraction forces. Med Biol Eng Comput. 2004;42(4):487495. PubMed ID: 15320457 doi:10.1007/BF02350989

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Merletti R, Holobar A, Farina D. Analysis of motor units with high-density surface electromyography. J Electromyogr Kinesiol. 2008;18(6):879890. PubMed ID: 19004645 doi:10.1016/j.jelekin.2008.09.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Farina D, Holobar A, Merletti R, Enoka RM. Decoding the neural drive to muscles from the surface electromyogram. Clin Neurophysiol. 2010;121(10):16161623. PubMed ID: 20444646 doi:10.1016/j.clinph.2009.10.040

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Gallego JA, Dideriksen JL, Holobar A, et al. The phase difference between neural drives to antagonist muscles in essential tremor is associated with the relative strength of supraspinal and afferent input. J Neurosci. 2015;35(23):89258937. PubMed ID: 26063924 doi:10.1523/JNEUROSCI.0106-15.2015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Yavuz US, Negro F, Sebik O, et al. Estimating reflex responses in large populations of motor units by decomposition of the high-density surface electromyogram. J Physiol. 2015;593(19):43054318. PubMed ID: 26115007 doi:10.1113/JP270635

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Ebersole KT, O’Connor KM, Wier AP. Mechanomyographic and electromyographic responses to repeated concentric muscle actions of the quadriceps femoris. J Electromyogr Kinesiol. 2006;16(2):149157. PubMed ID: 16139522 doi:10.1016/j.jelekin.2005.05.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Scammon RE. The Measurement of the Body in Children. University of Minnesota Press; 1930:173215.

  • 21.

    Malina RM. Adolescent changes in size, build, composition and performance. Hum Biol. 1974;46(1):117131. PubMed ID: 4426587

  • 22.

    Malina RM, Bouchard C. Growth, Maturation, and Physical Activity. TAISHUKAN Publishing Co, Ltd; 2004:108110.

  • 23.

    Sekine Y, Hirose N. Cross-sectional comparison of age-related changes in the quadriceps femoris in Japanese basketball players. Int J Adolesc Med Health. 2020;32(2):20170117. PubMed ID: 29168968 doi:10.1515/ijamh-2017-0117

    • Search Google Scholar
    • Export Citation
  • 24.

    Beunen GP. Adolescent Growth and Motor Performance: A Longitudinal Study of Belgian Boys. Human Kinetics Publishers; 1988.

  • 25.

    Maffulli N, Caine D. The epidemiology of children’s team sports injuries. Med Sport Sci. 2005;49:18. PubMed ID: 16247259 doi:10.1159/000085330

    • Search Google Scholar
    • Export Citation
  • 26.

    Itoh R, Hirose N. Relationship among biological maturation, physical characteristics, and motor abilities in youth elite soccer players. J Strength Cond Res. 2020;34(2):382388. PubMed ID: 31469763 doi:10.1519/JSC.0000000000003346

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Haff GG, Triplett NT. Essentials of Strength Training and Conditioning. Human Kinetics Publishers; 2015.

  • 28.

    Henneman E, Somjen G, Carpenter DO. Functional significance of cell size in spinal motoneurons. J Neurophysiol. 1965;28(3):560580. PubMed ID: 14328454 doi:10.1152/jn.1965.28.3.560

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Hu CH, Yang CC, Tu SJ, Huang IJ, Ganbat D, Guo LY. Characteristics of the electrophysiological properties of neuromuscular motor units and its adaptive strategy response in lower extremity muscles for seniors with pre-sarcopenia: a preliminary study. Int J Environ Res Public Health. 2021;18(6):3063. doi:10.3390/ijerph18063063

    • Search Google Scholar
    • Export Citation
  • 30.

    Jason RK. Muscle fiber types and training. Strength Cond J. 2001;23(5):2126. doi:10.1519/00126548-200110000-00004

All Time Past Year Past 30 Days
Abstract Views 2141 876 68
Full Text Views 190 142 16
PDF Downloads 115 35 8