Click name to view affiliation
Purpose: Modeling intermittent work capacity is an exciting development to the critical power model with many possible applications across elite sport. With the Skiba 2 model validated using subelite participants, an adjustment to the model’s recovery rate has been proposed for use in elite cyclists (Bartram adjustment). The team pursuit provides an intermittent supramaximal event with which to validate the modeling of W′ in this population. Methods: Team pursuit data of 6 elite cyclists competing for Australia at a Track World Cup were solved for end W′ values using both the Skiba 2 model and the Bartram adjustment. Each model’s success was evaluated by its ability to approximate end W′ values of 0 kJ, as well as a count of races modeled to within a predetermined error threshold of ±1.840 kJ. Results: On average, using the Skiba 2 model found end W′ values different from zero (P = .007; mean ± 95% confidence limit, –2.7 ± 2.0 kJ), with 3 out of 8 cases ending within the predetermined error threshold. Using the Bartram adjustment on average resulted in end W′ values that were not different from zero (P = .626; mean ± 95% confidence limit, 0.5 ± 2.5 kJ), with 4 out of 8 cases falling within the predetermined error threshold. Conclusions: On average, the Bartram adjustment was an improvement to modeling intermittent work capacity in elite cyclists, with the Skiba 2 model underestimating the rate of W′ recovery. In the specific context of modeling team pursuit races, all models were too variable for effective use; hence, individual recovery rates should be explored beyond population-specific rates.
Bartram and Norton are with the Alliance for Research in Exercise, Nutrition and Activity, University of South Australia, Adelaide, SA, Australia. Bartram is also with Cycling Australia, Adelaide, SA, Australia. Thewlis is with the Centre of Orthopaedic and Trauma Research, University of Adelaide, Adelaide, SA, Australia. Martin is with Australian Catholic University, Melbourne, VIC, Australia.