Sleep Duration Correlates With Performance in Ultra-Endurance Triathlon

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Jacob N. Kisiolek
Search for other papers by Jacob N. Kisiolek in
Current site
Google Scholar
PubMed
Close
,
Kyle A. Smith
Search for other papers by Kyle A. Smith in
Current site
Google Scholar
PubMed
Close
,
Daniel A. Baur
Search for other papers by Daniel A. Baur in
Current site
Google Scholar
PubMed
Close
,
Brandon D. Willingham
Search for other papers by Brandon D. Willingham in
Current site
Google Scholar
PubMed
Close
,
Margaret C. Morrissey
Search for other papers by Margaret C. Morrissey in
Current site
Google Scholar
PubMed
Close
,
Samantha M. Leyh
Search for other papers by Samantha M. Leyh in
Current site
Google Scholar
PubMed
Close
,
Patrick G. Saracino
Search for other papers by Patrick G. Saracino in
Current site
Google Scholar
PubMed
Close
,
Cheri D. Mah
Search for other papers by Cheri D. Mah in
Current site
Google Scholar
PubMed
Close
, and
Michael J. Ormsbee
Search for other papers by Michael J. Ormsbee in
Current site
Google Scholar
PubMed
Close
Restricted access

The relationship between sleep duration, sleep quality, and race completion time during each stage of a 3-day ultra-endurance triathlon (stage 1: 10-km swim, 146-km cycle; stage 2: 276-km cycle; and stage 3: 84.4-km run) was investigated. Seventeen triathletes partook in sleep analysis throughout the ultra-endurance multiday triathlon using an actigraphy wristband. The participants wore the band to record objective sleep outcomes for approximately 4 days (1–2 d prerace, 3 race days, and 1 d postrace), except while racing. The total sleep time (TST; prerace: 414.1 [95.3] min, prestage 1: 392.2 [138.3] min, prestage 2: 355.6 [62.5] min, and prestage 3: 299.7 [107.0] min) significantly decreased over time (P < .05). Significant Pearson moment–product correlations were found between TST and subsequent race–day performance for race stage 1 (r = −.577; P = .019) and stage 3 (r = −.546; P = .035), with further analysis revealing that TST explained 33% and 30% of the variation in performance for stages 1 and 3, respectively. During a 3-day ultra-endurance triathlon, the TST was reduced and had a significant negative correlation to exercise performance, indicating that sleep loss was associated with slower performances. Sleep onset latency, wake episodes, and sleep efficiency did not significantly change over the course of this investigation, which may stem from the close proximity of exercise to sleep.

Kisiolek is with the School of Sport and Exercise Science, University of Northern Colorado, Greeley, CO, USA. Smith is with the Dept of Nutritional Sciences, University of Arizona, Tucson, AZ, USA. Baur is with the Dept of Physical Education, Virginia Military Inst, Lexington, VA, USA. Willingham, Leyh, Saracino, and Ormsbee are with the Dept of Nutrition and Integrative Physiology, Inst of Sports Sciences and Medicine, Florida State University, Tallahassee, FL, USA. Morrissey is with the Korey Stringer Inst, University of Connecticut, Storrs, CT, USA. Mah is with the Human Performance Center, Dept of Orthopedics, University of California San Francisco, San Francisco, CA, USA, and the Stanford Sleep Medicine Center, Dept of Psychiatry and Behavioral Sciences, Stanford University, Redwood City, CA. Ormsbee is also with the Discipline of Biokinetics, Exercise and Leisure Sciences, University of KwaZulu-Natal, Durban, South Africa.

Ormsbee (mormsbee@fsu.edu) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Troynikov O, Watson CG, Nawaz N. Sleep environments and sleep physiology: a review. J Therm Biol. 2018;78(April):192203. doi:10.1016/j.jtherbio.2018.09.012

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Lasselin J, Rehman JU, Åkerstedt T, Lekander M, Axelsson J. Effect of long-term sleep restriction and subsequent recovery sleep on the diurnal rhythms of white blood cell subpopulations. Brain Behav Immun. 2015;47:9399. PubMed ID: 25451611 doi:10.1016/j.bbi.2014.10.004

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Knutson KL, Spiegel K, Penev P, Van Cauter E. The metabolic consequences of sleep deprivation. Sleep Med Rev. 2007;11(3):163178. PubMed ID: 17442599 doi:10.1016/j.smrv.2007.01.002

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Goel N, Durmer JS, Dinges DF. Neurocognitive consequences of sleep deprivation. Semin Neurol. 2009;29(4):320339. PubMed ID: 19742409 doi:10.1055/s-0029-1237117

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Everson CA, Bergmann BM, Rechtschaffen A. Sleep deprivation in the rat: III. Total sleep deprivation. Sleep. 1989;12(1):1321. PubMed ID: 2928622 doi:10.1093/sleep/12.1.13

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Pilcher JJ, Huffcutt AI. Effects of sleep deprivation on performance: a meta-analysis. Sleep. 1996;19(4):318326. PubMed ID: 8776790 doi:10.1093/sleep/19.4.318

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Sinnerton S, Reilly T. Effects of sleep loss and time of day in swimmers. Biomech Med Swim Swim Sci. 1992;4:399404.

  • 8.

    Jarraya S, Jarraya M, Chtourou H, Souissi N. Effect of time of day and partial sleep deprivation on the reaction time and the attentional capacities of the handball goalkeeper. Biol Rhythm Res. 2014;45(2):183191. doi:10.1080/09291016.2013.787685

    • Search Google Scholar
    • Export Citation
  • 9.

    Juliff L, Halson S, Hebert J, Forsyth P, Peiffer J. Longer sleep durations are positively associated with finishing place during a national multiday netball competition laura. J Strength Cond Res. 2018;32(1):189194. PubMed ID: 28135218 doi:10.1519/JSC.0000000000001793

    • Search Google Scholar
    • Export Citation
  • 10.

    Azboy O, Kaygisiz Z. Effects of sleep deprivation on cardiorespiratory functions of the runners and volleyball players during rest and exercise. Acta Physiol Hung. 2009;96(1):2936. PubMed ID: 19264040 doi:10.1556/APhysiol.96.2009.1.3

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Oliver SJ, Costa RJS, Walsh NP, Laing SJ, Bilzon JLJ. One night of sleep deprivation decreases treadmill endurance performance. Eur J Appl Physiol. 2009;107(2):155161. PubMed ID: 19543909 doi:10.1007/s00421-009-1103-9

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Angus R, Heslegrave R, Myles S. Effects of prolonged sleep deprivation, with and without chronic physical exercise, on mood and performance. Soc Psychophysiological Res. 1985;22(3):276282.

    • Search Google Scholar
    • Export Citation
  • 13.

    Chase JD, Roberson PA, Saunders MJ, Hargens TA, Womack CJ, Luden ND. One night of sleep restriction following heavy exercise impairs 3-km cycling time-trial performance in the morning. Appl Physiol Nutr Metab. 2017;42(9):909915. PubMed ID: 28467857 doi:10.1139/apnm-2016-0698

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    HajSalem M, Chtourou H, Aloui A, Hammouda O, Souissi N. Effects of partial sleep deprivation at the end of the night on anaerobic performances in judokas. Biol Rhythm Res. 2013;44(5):815821. doi:10.1080/09291016.2012.756282

    • Search Google Scholar
    • Export Citation
  • 15.

    Souissi N, Sesboüé B, Gauthier A, Larue J, Davenne D. Effects of one night’s sleep deprivation on anaerobic performance the following day. Eur J Appl Physiol. 2003;89(3–4):359366. doi:10.1007/s00421-003-0793-7

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Taheri M, Arabameri E. The effect of sleep deprivation on choice Reaction time and anaerobic power of college student athletes. Asian J Sports Med. 2012;3(1):1520. PubMed ID: 22461961 doi:10.5812/asjsm.34719

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Edwards BJ, Waterhouse J. Effects of one night of partial sleep deprivation upon diurnal rhythms of accuracy and consistency in throwing darts. Chronobiol Int. 2009;26(4):756768. PubMed ID: 19444754 doi:10.1080/07420520902929037

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Symons JD, Vanhelder T, Myles WS. Physical performance and physiological responses following 60 hours of sleep deprivation. Med Sci Sports Exerc. 1988;20(4):374380. doi:10.1249/00005768-198808000-00008

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Knechtle B, Knechtle P, Lepers R. Participation and performance trends in ultra-triathlons from 1985 to 2009. Scand J Med Sci Sport. 2011;21(6):e82e90. doi:10.1111/j.1600-0838.2010.01160.x

    • Search Google Scholar
    • Export Citation
  • 20.

    Lahart IM, Lane AM, Hulton A, et al. Challenges in maintaining emotion regulation in a sleep and energy deprived state induced by the 4800 km ultra-endurance bicycle race; the Race Across AMerica (RAAM). J Sport Sci Med. 2013;12(3):481488.

    • Search Google Scholar
    • Export Citation
  • 21.

    Pescatello LS, Arena R, Riebe D, Thompson PD. ACSM’s Guidelines for Exercise Testing and Prescription. 9th ed. Baltimore, MD: Lippincott Williams & Wilkins; 2013.

    • Search Google Scholar
    • Export Citation
  • 22.

    Driller M, McQuillan J, O’Donnell S. Inter-device reliability of an automatic-scoring actigraph for measuring sleep in healthy adults. Sleep Sci. 2016;9(3):198201. PubMed ID: 28123660 doi:10.1016/j.slsci.2016.08.003

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Russel CA, Caldwell JA, Arand D, Myers LJ, Wubbels P, Downs H. Validation of the Fatigue Science ReadiBandTM Actigraph and Associated Sleep/Wake Classification Algorithms. Archinoetics; 2015: 110.

    • Search Google Scholar
    • Export Citation
  • 24.

    Kushida CA, Chang A, Gadkary C, Guilleminault C, Carrillo O, Dement WC. Comparison of actigraphic, polysomnographic, and subjective assessment of sleep parameters in sleep-disordered patients. Sleep Med. 2001;2(5):389396. PubMed ID: 14592388 doi:10.1016/s1389-9457(00)00098-8

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Cohen J. Statistical power analysis for the behavioral sciences. Stat Power Anal Behav Sci. 1988;2:567.

  • 26.

    Knechtle B, Wirth A, Knechtle P, Rüst CA, Rosemann T, Lepers R. No improvement in race performance by naps in male ultra-endurance cyclists in a 600-km ultra-cycling race. Chin J Physiol. 2012;55(2):125133. PubMed ID: 22559737 doi:10.4077/cjp.2012.baa022

    • Search Google Scholar
    • Export Citation
  • 27.

    Hurdiel R, Pezé T, Daugherty J, et al. Combined effects of sleep deprivation and strenuous exercise on cognitive performances during The North Face® Ultra Trail du Mont Blanc® (UTMB®). J Sports Sci. 2015;33(7):670674. PubMed ID: 25333827 doi:10.1080/02640414.2014.960883

    • Search Google Scholar
    • Export Citation
  • 28.

    Martin BJ. Effect of sleep deprivation on tolerance of prolonged exercise. Eur J Appl Physiol Occup Physiol. 1981;47(4):345354. PubMed ID: 7199438 doi:10.1007/BF02332962

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Temesi J, Arnal PJ, Davranche K, et al. Does central fatigue explain reduced cycling after complete sleep deprivation? Med Sci Sports Exerc. 2013;45(12):22432253. PubMed ID: 23760468 doi:10.1249/MSS.0b013e31829ce379

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Simpson NS, Gibbs EL, Matheson GO. Optimizing sleep to maximize performance: implications and recommendations for elite athletes. Scand J Med Sci Sport. 2017;27(3):266274. doi:10.1111/sms.12703

    • Search Google Scholar
    • Export Citation
  • 31.

    Banks S, Dinges DF. Behavioral and physiological consequences of sleep restriction. J Clin Sleep Med. 2005;3(5):519528. doi:10.5664/jcsm.26918

    • Search Google Scholar
    • Export Citation
  • 32.

    Rogers N, Price N, Mullington J, Szuba M, Van Dongen H, Dinges D. Plasma cortisol changes following chronic sleep restriction. Sleep. 2000;23:A70.

    • Search Google Scholar
    • Export Citation
  • 33.

    Ecker A, Schaechter J, Price N. Changes in plasma melatonin secretion following chronic sleep restriction. Sleep. 2000;23:184185.

  • 34.

    Orthmann J, Rodger N, Price N. Changes in plasma growth hormone levels following chronic sleep restriction. Sleep. 2001;24:248249.

  • 35.

    Baur DA, Bach CW, Hyder WJ, Ormsbee MJ. Fluid retention, muscle damage, and altered body composition at the Ultraman triathlon. Eur J Appl Physiol. 2016;116(3):447458. PubMed ID: 26560107 doi:10.1007/s00421-015-3291-9

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Smith KA, Kisiolek JN, Willingham BD, et al. Ultra-endurance triathlon performance and markers of whole-body and gut-specific inflammation. Eur J Appl Physiol. 2020;120(2):349357. doi:10.1007/s00421-019-04279-3

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Mougin F, Bourdin H, Simon-Rigaud ML, Nguyen Nhu U, Kantelip JP, Davenne D. Hormonal responses to exercise after partial sleep deprivation and after a hypnotic drug-induced sleep. J Sports Sci. 2001;19(2):8997. PubMed ID: 11217014 doi:10.1080/026404101300036253

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Mougin F, Bourdin H, Simon-Rigaud ML, Didier JM, Toubin G, Kantelip JP. Effects of a selective sleep deprivation on subsequent anaerobic performance. Int J Sports Med. 1996;17(2):115119. PubMed ID: 8833713 doi:10.1055/s-2007-972818. http://europepmc.org/abstract/MED/8833713

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Roberts SSH, Teo WP, Aisbett B, Warmington SA. Extended sleep maintains endurance performance better than normal or restricted sleep. Med Sci Sports Exerc. 2019;51(12):25162523. PubMed ID: 31246714 doi:10.1249/MSS.0000000000002071

    • Search Google Scholar
    • Export Citation
  • 40.

    Arnett MG. The effect of a morning and afternoon practice schedule on morning and afternoon swim performance. J Strength Cond Res. 2001;15(1):127131. PubMed ID: 11708696 doi:10.1519/1533-4287(2001)015%2C0127:teoama%2E2.0.co;2

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Teo W, Newton MJ, McGuigan MR. Circadian rhythms in exercise performance: implications for hormonal and muscular adaptation. J Sport Sci Med. 2011;10(4):600606.

    • Search Google Scholar
    • Export Citation
  • 42.

    Henst RHP, Jaspers RT, Roden LC, Rae DE. A chronotype comparison of South African and Dutch marathon runners: the role of scheduled race start times and effects on performance. Chronobiol Int. 2015;32(6):858868. PubMed ID: 26102236 doi:10.3109/07420528.2015.1048870

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Petit E, Mougin F, Bourdin H, Tio G, Haffen E. Impact of 5-h phase advance on sleep architecture and physical performance in athletes. Appl Physiol Nutr Metab. 2014;39(11):12301236. PubMed ID: 25140762 doi:10.1139/apnm-2013-0531

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Drake C, Roehrs T, Shambroom J, Roth T. Caffeine effects on sleep taken 0, 3, or 6 hours before going to bed. J Clin Sleep Med. 2013;9(11):11951200. PubMed ID: 24235903 doi:10.5664/jcsm.3170

    • Search Google Scholar
    • Export Citation
  • 45.

    Shapiro CM, Bortz R, Mitchell D, Bartel P, Jooste P. Slow-wave sleep: a recovery period after exercise. Science. 1981;214(4526):12531254. PubMed ID: 7302594 doi:10.1126/science.7302594

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Fullagar HHK, Skorski S, Duffield R, Hammes D, Coutts AJ, Meyer T. Sleep and athletic performance: the effects of sleep loss on exercise performance, and physiological and cognitive responses to exercise. Sport Med. 2015;45(2):161186. doi:10.1007/s40279-014-0260-0

    • Search Google Scholar
    • Export Citation
  • 47.

    Berger RJ, Phillips NH. BEHAVIOURAL Energy conservation and sleep. Behav Brain Res. 1995;69(1-2):6573. PubMed ID: 7546319 doi:10.1016/0166-4328(95)00002-B

    • Search Google Scholar
    • Export Citation
  • 48.

    Mougin F, Simon-Rigaud ML, Davenne D, et al. Effects of sleep disturbances on subsequent physical performance. Eur J Appl Physiol Occup Physiol. 1991;63(2):7782. PubMed ID: 1748108 doi:10.1007/BF00235173

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Plyley MJ, Shephard RJ, Davis GM, Goode RC. Sleep deprivation and cardiorespiratory function—influence of intermittent submaximal exercise. Eur J Appl Physiol Occup Physiol. 1987;56(3):338344. PubMed ID: 3569243 doi:10.1007/BF00690902

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Marino M, Li Y, Rueschman MN, et al. Measuring sleep: accuracy, sensitivity, and specificity of wrist actigraphy compared to polysomnography. Sleep. 2013;36(11):17471755. PubMed ID: 24179309 doi:10.5665/sleep.3142

    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 4049 3274 186
Full Text Views 54 28 2
PDF Downloads 62 27 0