Relationship Between External and Internal Load Measures in Youth Beach Handball

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Alice Iannaccone
Search for other papers by Alice Iannaccone in
Current site
Google Scholar
PubMed
Close
,
Andrea Fusco
Search for other papers by Andrea Fusco in
Current site
Google Scholar
PubMed
Close
,
Antanas Skarbalius
Search for other papers by Antanas Skarbalius in
Current site
Google Scholar
PubMed
Close
,
Audinga Kniubaite
Search for other papers by Audinga Kniubaite in
Current site
Google Scholar
PubMed
Close
,
Cristina Cortis
Search for other papers by Cristina Cortis in
Current site
Google Scholar
PubMed
Close
, and
Daniele Conte
Search for other papers by Daniele Conte in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: Assessing the relationship between external load (EL) and internal load (IL) in youth male beach handball players. Methods: A total of 11 field players from the Lithuanian U17 beach handball team were monitored across 14 training sessions and 7 matches. The following EL variables were assessed by means of inertial movement units: PlayerLoad™, accelerations, decelerations, changes of direction, and jumps and total of inertial movements. IL was assessed objectively and subjectively using the summated heart rate zones and training load calculated via session rating of perceived exertion, respectively. Spearman correlations (ρ) were used to assess the relationship between EL and IL. The interindividual variability was investigated using linear mixed models with random intercepts with IL as dependent variable, PlayerLoad as the independent variable, and players as random effect. Results: The lowest significant (P < .05) relationship was for high jumps with objective (ρ = .56) and subjective (ρ = .49) IL. The strongest relationship was for PlayerLoad with objective (ρ = .9) and subjective (ρ = .84) IL. From the linear mixed model, the estimated SD of the random intercepts was 19.78 arbitrary units (95% confidence interval, 11.75–33.31); SE = 5.26, and R2 = .47 for the objective IL and 6.03 arbitrary units (95% confidence interval, 0.00–7330.6); SE = 21.87; and R2 = .71 for the subjective IL. Conclusions: Objective and subjective IL measures can be used as a monitoring tool when EL monitoring is not possible. Coaches can predict IL based on a given EL by using the equations proposed in this study.

Iannaccone, Fusco, and Cortis are with the Dept of Human Sciences, Society and Health, University of Cassino and Lazio Meridionale, Cassino, Italy. Iannaccone and Conte are with the Inst of Sport Science and Innovations, and Skarbalius and Kniubaite, the Dept of Coaching Science, Lithuanian Sports University, Kaunas, Lithuania.

Fusco (andrea.fusco@unicas.it) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Wagner H, Fuchs P, Fusco A, Fuchs P, Bell JW, von Duvillard SP. Physical performance in elite male and female team-handball players. Int J Sports Physiol Perform. 2019;14(1):6067. doi:10.1123/ijspp.2018-0014

    • Search Google Scholar
    • Export Citation
  • 2.

    Kniubaite A, Skarbalius A, Clemente FM, Conte D. Quantification of external and internal match loads in elite female team handball. Biol Sport. 2019;36(4):311316. PubMed ID: 31938001 doi:10.5114/biolsport.2019.88753

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Iannaccone A, Conte D, Cortis C, Fusco A. Usefulness of linear mixed-effects models to assess the relationship between objective and subjective internal load in team sports. Int J Environ Res Public Health. 2021;18(2):392. doi:10.3390/ijerph18020392

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Iannaccone A, Fusco A, Conte D, Cortis C. Notational analysis of beach handball [published ahead of print December 17, 2020]. Human Movement. doi:10.5114/hm.2021.101757

    • Search Google Scholar
    • Export Citation
  • 5.

    Sánchez-Sáez JA, Sánchez-Sánchez J, Martínez-Rodríguez A, Felipe JL, García-Unanue J, Lara-Cobos D. Global positioning system analysis of physical demands in elite women’s beach handball players in an official spanish championship. Sensors. 2021;21(3):850. PubMed ID: 33513973 doi:10.3390/s21030850

    • Search Google Scholar
    • Export Citation
  • 6.

    Zapardiel JC, Asín-Izquierdo I. Conditional analysis of elite beach handball according to specific playing position through assessment with GPS. Int J Perform Anal Sport. 2020;20(1):118132. doi:10.1080/24748668.2020.1718458

    • Search Google Scholar
    • Export Citation
  • 7.

    Pueo B, Jimenez-Olmedo JM, Penichet-Tomas A, Ortega Becerra M, Espina Agullo JJ. Analysis of time-motion and heart rate in elite male and female beach handball. J Sports Sci Med. 2017;16(4):450458. PubMed ID: 29238243 http://www.ncbi.nlm.nih.gov/pubmed/29238243

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Halson SL. Monitoring training load to understand fatigue in athletes. Sports Med. 2014;44(suppl 2):139147. doi:10.1007/s40279-014-0253-z

    • Search Google Scholar
    • Export Citation
  • 9.

    Luteberget LS, Holme BR, Spencer M. Reliability of wearable inertial measurement units to measure physical activity in team handball. Int J Sports Physiol Perform. 2018;13(4):467473. PubMed ID: 28872371 doi:10.1123/ijspp.2017-0036

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Impellizzeri FM, Marcora SM, Coutts AJ. Internal and external training load: 15 years on. Int J Sports Physiol Perform. 2019;14(2):270273. PubMed ID: 30614348 doi:10.1123/ijspp.2018-0935

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Bourdon PC, Cardinale M, Murray A, et al. Monitoring athlete training loads: consensus statement. Int J Sports Physiol Perform. 2017;12(suppl 2):S2-161S2-170. doi:10.1123/IJSPP.2017-0208

    • Search Google Scholar
    • Export Citation
  • 12.

    Fusco A, Sustercich W, Edgerton K, et al. Effect of progressive fatigue on session RPE. J Funct Morphol Kinesiol. 2020;5(1):15. doi:10.3390/jfmk5010015

    • Search Google Scholar
    • Export Citation
  • 13.

    Fusco A, Knutson C, King C, et al. Session RPE during prolonged exercise training. Int J Sports Physiol Perform. 2020;15(2):292294. PubMed ID: 31172830 doi:10.1123/ijspp.2019-0137

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Edwards S. The Heart Rate Monitor Book. Sacramento, CA, Fleet Feet Press; 1993 .

  • 15.

    Foster C, Boullosa D, McGuigan M, et al. 25 years of session rating of perceived exertion: historical perspective and development. Int J Sports Physiol Perform. 2021;16:612621. doi:10.1123/ijspp.2020-0599

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Foster C, Rodriguez-Marroyo JA, de Koning JJ. Monitoring training loads: the past, the present, and the future. Int J Sports Physiol Perform. 2017;12(suppl 2):S2-2S2-8. doi:10.1123/IJSPP.2016-0388

    • Search Google Scholar
    • Export Citation
  • 17.

    McLaren SJ, Macpherson TW, Coutts AJ, Hurst C, Spears IR, Weston M. The relationships between internal and external measures of training load and intensity in team sports: a meta-analysis. Sports Med. 2018;48(3):641658. PubMed ID: 29288436 doi:10.1007/s40279-017-0830-z

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    International Handball Federation. Rules of the game “Beach Handball.” 2014. https://www.ihf.info/sites/default/files/2019-05/0_09-Rules of the Game %28Beach Handball%29_GB.pdf. Accessed December 12, 2019.

    • Search Google Scholar
    • Export Citation
  • 19.

    Coutts AJ, Duffield R. Validity and reliability of GPS devices for measuring movement demands of team sports. J Sci Med Sport. 2008;13(1):133135. PubMed ID: 19054711 doi:10.1016/j.jsams.2008.09.015

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Boyd LJ, Ball K, Aughey RJ. The reliability of minimaxx accelerometers for measuring physical activity in Australian football. Int J Sports Physiol Perform. 2011;6(3):311321. PubMed ID: 21911857 doi:10.1123/ijspp.6.3.311

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Fox JL, O’Grady CJ, Scanlan AT. The relationships between external and internal workloads during basketball training and games. Int J Sports Physiol Perform. 2020;15(8):10811086. doi:10.1123/ijspp.2019-0722

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Simpson MJ, Jenkins DG, Scanlan AT, Kelly VG. Relationships between external- and internal-workload variables in an elite female netball team and between playing positions. Int J Sports Physiol Perform. 2020;15(6):841846. PubMed ID: 32163926 doi:10.1123/ijspp.2019-0619

    • Search Google Scholar
    • Export Citation
  • 23.

    Berkelmans DM, Dalbo VJ, Fox JL, et al. Influence of different methods to determine maximum heart rate on training load outcomes in basketball players. J Strength Cond Res. 2018;32(11):31773185. PubMed ID: 30540282 doi:10.1519/JSC.0000000000002291

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Foster C, Hector LL, Welsh R, Schrager M, Green MA, Snyder AC. Effects of specific versus cross-training on running performance. Eur J Appl Physiol Occup Physiol. 1995;70(4):367372. PubMed ID: 7649149 doi:10.1007/BF00865035

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Foster C, Florhaug JA, Franklin J, et al. A new approach to monitoring exercise training. J Strength Cond Res. 2001;15(1):109115. PubMed ID: 11708692

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Arney BE, Glover R, Fusco A, et al. Comparison of rating of perceived exertion scales during incremental and interval exercise. Kinesiology. 2019;51(2):150157. doi:10.26582/k.51.2.1

    • Search Google Scholar
    • Export Citation
  • 27.

    Arney BE, Glover R, Fusco A, et al. Comparison of RPE (rating of perceived exertion) scales for session RPE. Int J Sports Physiol Perform. 2019;14(7):994996. PubMed ID: 30569764 doi:10.1123/ijspp.2018-0637

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Hopkins WG. A scale of magnitudes for effect statistics. A new view of statistics: effect magnitudes. 2002. http://www.sportsci.org/resource/stats/effectmag.html. Accessed August 21, 2020.

    • Search Google Scholar
    • Export Citation
  • 29.

    Haddad M, Stylianides G, Djaoui L, Dellal A, Chamari K. Session-RPE method for training load monitoring: validity, ecological usefulness, and influencing factors. Front Neurosci. 2017;11(NOV):612. doi:10.3389/fnins.2017.00612

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Lupo C, Capranica L, Cortis C, Guidotti F, Bianco A, Tessitore A. Session-RPE for quantifying load of different youth taekwondo training sessions. J Sports Med Phys Fitness. 2017;57(3):189194. doi:10.23736/s0022-4707.16.06021-x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Fox JL, Scanlan AT, Stanton R. A review of player monitoring approaches in basketball: current trends and future directions. J Strength Cond Res. 2017;31(7):20212029. PubMed ID: 28445227 doi:10.1519/JSC.0000000000001964

    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2508 2508 260
Full Text Views 34 34 6
PDF Downloads 46 46 6