Effects of Active Preconditioning With Local and Systemic Hypoxia on Submaximal Cycling

in International Journal of Sports Physiology and Performance
Restricted access

Purpose: The authors compared the effects of active preconditioning with local and systemic hypoxia during submaximal cycling. Methods: On separate visits, 14 active participants completed 4 trials. Each visit was composed of 1 preconditioning phase followed, after 40 minutes of rest, by 3 × 6-minute cycling bouts (intensity = 85% of critical power; rest = 6 min). The preconditioning phase consisted of 4 × 5-minute cycling bouts at 1.5 W·kg−1 (rest = 5 min) in 4 conditions: control (no occlusion and normoxia), blood flow restriction (60% of total occlusion), HYP (systemic hypoxia; inspired fraction of oxygen = 13.6%), and blood flow restriction + HYP (local and systemic hypoxia combined). Results: During the preconditioning phase, there were main effects of both systemic (all P < .014) and local hypoxia (all P ≤ .001) on heart rate, arterial oxygen saturation, leg discomfort, difficulty of breathing, and blood lactate concentration. Cardiorespiratory variables, gross efficiency, energy cost, and energy expenditure during the last minute of 6-minute cycling bouts did not differ between conditions (all P > .105). Conclusion: Local and systemic hypoxic stimuli, or a combination of both, during active preconditioning did not improve physiological responses such as cycling efficiency during subsequent submaximal cycling.

Girard is with the School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Crawley, WA, Australia. Leuenberger, Willis, Borrani, and Millet are with the Inst of Sport Sciences, University of Lausanne, Lausanne, Switzerland.

Girard (oliv.girard@gmail.com) is corresponding author.
  • 1.

    Takarada Y, Takazawa H, Ishii N. Applications of vascular occlusion diminish disuse atrophy of knee extensor muscles. Med Sci Sports Exerc. 2000;32(12):20352039. PubMed ID: 11128848 doi:10.1097/00005768-200012000-00011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Salvador AF, De Aguiar RA, Lisboa FD, Pereira KL, Cruz RS, Caputo F. Ischemic preconditioning and exercise performance: a systematic review and meta-analysis. Int J Sports Physiol Perform. 2016;11(1):414. PubMed ID: 26218309 doi:10.1123/ijspp.2015-0204

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Sprick JD, Rickards CA. Combining remote ischemic preconditioning and aerobic exercise: a novel adaptation of blood flow restriction exercise. Am J Physiol Regul Integr Comp Physiol. 2017;313(5):R497R506. PubMed ID: 28835447 doi:10.1152/ajpregu.00111.2017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Fortin J-F, Billaut F. Blood-flow restricted warm-up alters muscle hemodynamics and oxygenation during repeated sprints in American football players. Sports. 2019;7(5):121. doi:10.3390/sports7050121

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Vedam H, Philips CK, Wang D, et al. Short-term hypoxia reduces arterial stiffness in healthy men. Eur J Appl Physiol. 2009;105(1):1925. PubMed ID: 18815804 doi:10.1007/s00421-008-0868-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Wang L, Yang S, Yan L, et al. Hypoxia preconditioning promotes endurance exercise capacity of mice by activating skeletal muscle Nrf2. J Appl Physiol. 2019;127(5):12671277. PubMed ID: 31487225 doi:10.1152/japplphysiol.00347.2019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Casey DP, Joyner MJ. Compensatory vasodilation during hypoxic exercise: mechanisms responsible for matching oxygen supply to demand. J Physiol. 2012;590(24):63216326. PubMed ID: 22988134 doi:10.1113/jphysiol.2012.242396

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Aebi MR, Willis SJ, Girard O, Borrani F, Millet GP. Active preconditioning with blood flow restriction or and systemic hypoxic exposure does not improve repeated sprint cycling performance. Front Physiol. 2019;10:1393. PubMed ID: 31798461 doi:10.3389/fphys.2019.01393

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Vanhatalo A, Doust JH, Burnley M. Determination of critical power using a 3-min all-out test. Med Sci Sports Exerc. 2007;39(3):548555. PubMed ID: 17473782 doi:10.1249/mss.0b013e31802dd3e6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Moseley L, Jeukendrup AE. The reliability of cycling efficiency. Med Sci Sports Exerc. 2001;33(4):621627. PubMed ID: 11283439 doi:10.1097/00005768-200104000-00017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Slysz JT, Burr JF. Enhanced metabolic stress augments ischemic preconditioning for exercise performance. Front Physiol. 2018;9:1621. PubMed ID: 30498458 doi:10.3389/fphys.2018.01621

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Patterson SD, Hughes L, Warmington S, et al. Blood flow restriction exercise position stand: considerations of methodology, application, and safety. Front Physiol. 2019;10:533. PubMed ID: 31156448 doi:10.3389/fphys.2019.00533

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Pang CY, Neligan P, Xu H, et al. Role of ATP-sensitive K+ channels in ischemic preconditioning of skeletal muscle against infarction. Am J Physiol Heart Circ Physiol 1997;273(1):H44H51. doi:10.1152/ajpheart.1997.273.1.H44

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Kraus A, Pasha E, Machin D, et al. Bilateral upper limb remote ischemic preconditioning improves anaerobic power. Open Sports Med J. 2015;9(1):16. doi:10.2174/1874387001509010001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Herold F, Törpel A, Hamacher D, Budde H, Gronwald T. A discussion on different approaches for prescribing physical interventions—four roads lead to Rome, but which one should we choose? J Pers Med. 2020;10(3):55. doi:10.3390/jpm10030055

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2544 2545 450
Full Text Views 327 327 22
PDF Downloads 331 331 19