Nonergodicity in Load and Recovery: Group Results Do Not Generalize to Individuals

in International Journal of Sports Physiology and Performance
Restricted access

Purpose: The study of load and recovery gained significant interest in the last decades, given its important value in decreasing the likelihood of injuries and improving performance. So far, findings are typically reported on the group level, whereas practitioners are most often interested in applications at the individual level. Hence, the aim of the present research is to examine to what extent group-level statistics can be generalized to individual athletes, which is referred to as the “ergodicity issue.” Nonergodicity may have serious consequences for the way we should analyze, and work with, load and recovery measures in the sports field. Methods: The authors collected load, that is, rating of perceived exertion × training duration, and total quality of recovery data among youth male players of a professional football club. This data were collected daily across 2 seasons and analyzed on both the group and the individual level. Results: Group- and individual-level analysis resulted in different statistical outcomes, particularly with regard to load. Specifically, SDs within individuals were up to 7.63 times larger than SDs between individuals. In addition, at either level, the authors observed different correlations between load and recovery. Conclusions: The results suggest that the process of load and recovery in athletes is nonergodic, which has important implications for the sports field. Recommendations for training programs of individual athletes may be suboptimal, or even erroneous, when guided by group-level outcomes. The utilization of individual-level analysis is key to ensure the optimal balance of individual load and recovery.

Neumann, Van Yperen, and Den Hartigh are with the Dept of Psychology, and Brauers, Frencken, Brink, and Lemmink, the Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands. Frencken is also with the Football Club Groningen, Groningen, the Netherlands. Meerhoff is with the Leiden Inst of Advanced Computer Science (LIACS), Leiden University, Leiden, the Netherlands.

Neumann (n.d.neumann@rug.nl) is corresponding author.
  • 1.

    Kenttä G, Hassmén P. Overtraining and recovery. Sports Med. 1998;26(1):116. PubMed ID: 9739537 doi:10.2165/00007256-199826010-00001

  • 2.

    Brink MS, Visscher C, Arends S, Zwerver J, Post WJ, Lemmink KAPM. Monitoring stress and recovery: new insights for the prevention of injuries and illnesses in elite youth soccer players. Br J Sports Med. 2010;44(11):809815. PubMed ID: 20511621 doi:10.1136/bjsm.2009.069476

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Heidari J, Beckmann J, Bertollo M, et al. Multidimensional monitoring of recovery status and implications for performance. Int J Sports Physiol Perform. 2019;14(1):28. PubMed ID: 29543069 doi:10.1123/ijspp.2017-0669

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Kellmann M, Bertollo M, Bosquet L, et al. Recovery and performance in sport: consensus statement. Int J Sports Physiol Perform. 2018;13(2):240245. PubMed ID: 29345524 doi:10.1123/ijspp.2017-0759

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Kellmann M. Preventing overtraining in athletes in high-intensity sports and stress/recovery monitoring. Scand J Med Sci Sport. 2010;20 (suppl)(2):95102. PubMed ID: 20840567 doi:10.1111/j.1600-0838.2010.01192.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Saw AE, Main LC, Gastin PB. Monitoring the athlete training response: subjective self-reported measures trump commonly used objective measures: a systematic review. Br J Sports Med. 2016;50(5):281291. PubMed ID: 26423706 doi:10.1136/bjsports-2015-094758

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Gabbett TJ. The training-injury prevention paradox: should athletes be training smarter and harder? Br J Sports Med. 2016;50(5):273280. PubMed ID: 26758673 doi:10.1136/bjsports-2015-095788

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Bowen L, Gross AS, Gimpel M, Li FX. Accumulated workloads and the acute: chronic workload ratio relate to injury risk in elite youth football players. Br J Sports Med. 2017;51(5):452459. PubMed ID: 27450360 doi:10.1136/bjsports-2015-095820

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Bourdon PC, Cardinale M, Murray A, et al. Monitoring athlete training loads: consensus statement. Int J Sports Physiol Perform. 2017;12 (suppl 2):161170. PubMed ID: 28463642 doi:10.1123/IJSPP.2017-0208

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Fry RW, Grove JR, Morton AR, Zeroni PM, Gaudieri S, Keast D. Psychological and immunological correlates of acute overtraining. Br J Sports Med. 1994;28(4):241246. PubMed ID: 7894955 doi:10.1136/bjsm.28.4.241

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Brink MS, Visscher C, Coutts AJ, Lemmink KAPM. Changes in perceived stress and recovery in overreached young elite soccer players. Scand J Med Sci Sport. 2012;22(2):285292. PubMed ID: 21039901 doi:10.1111/j.1600-0838.2010.01237.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Hill Y, Meijer RR, Van Yperen NW, Michelakis G, Barisch S, Den Hartigh RJR. Nonergodicity in protective factors of resilience in athletes. Sport Exerc Perform Psychol. 2020. 10(2):217223. doi:10.1037/spy0000246

    • Search Google Scholar
    • Export Citation
  • 13.

    Den Hartigh RJR, Hill Y, Van Geert PLC. The development of talent in sports: a dynamic network approach. Complexity. 2018;2018:13. doi:10.1155/2018/9280154

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Chrzanowski-Smith OJ, Piatrikova E, Betts JA, Williams S, Gonzalez JT. Variability in exercise physiology: can capturing intra-individual variation help better understand true inter-individual responses? Eur J Sport Sci. 2020;20(4):452460. PubMed ID: 31397212 doi:10.1080/17461391.2019.1655100

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Glazier PS, Mehdizadeh S. Challenging conventional paradigms in applied sports biomechanics research. Sports Med. 2019;49(2):171176. PubMed ID: 30511347 doi:10.1007/s40279-018-1030-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Glazier P, Lamb P. Inter- and intra-individual movement variability in the golf swing. In Toms M, ed. Routledge International Handbook of Golf Science. New York, NY: Routledge; 2018:4963. doi:10.1080/14763141.2011.650187

    • Search Google Scholar
    • Export Citation
  • 17.

    Van Geert P. Group versus individual data in a dynamic systems approach to development. Enfance. 2014;3(3):283312. doi:10.4074/S0013754514003061

    • Search Google Scholar
    • Export Citation
  • 18.

    Bakdash JZ, Marusich LR. Repeated measures correlation. Front Psychol. 2017;8(456):113. PubMed ID: 28439244 doi:10.3389/fpsyg.2017.00456

  • 19.

    Bland JM, Altman DG. Statistics notes: correlation, regression, and repeated data. BMedJ. 1994;308(6933):896. PubMed ID: 8173371 doi:10.1136/bmj.308.6933.896

    • Search Google Scholar
    • Export Citation
  • 20.

    Molenaar PCM, Campbell CG. The new person-specific paradigm in psychology. Curr Dir Psychol Sci. 2009;18(2):112117. doi:10.1111/j.1467-8721.2009.01619.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Cattell RB. The three basic factor-analytic research designs—their interrelations and derivatives. Psychol Bull. 1952;49(5):499. PubMed ID: 12993927 doi:10.1037/h0054245

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Foster C, Daines E, Hector L, Snyder AC, Welsh R. Athletic performance in relation to training load. Wis Med J. 1996;95(6):370374. PubMed ID: 8693756

  • 23.

    Gabbett TJ, Domrow N. Relationships between training load, injury, and fitness in sub-elite collision sport athletes. J Sports Sci. 2007;25(13):15071519. PubMed ID: 17852696 doi:10.1080/02640410701215066

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Fisher AJ, Medaglia JD, Jeronimus BF. Lack of group-to-individual generalizability is a threat to human subjects research. Proc Natl Acad Sci USA. 2018;115(27):E6106E6115. PubMed ID: 29915059 doi:10.1073/pnas.1711978115

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Molenaar PCM. A manifesto on psychology as idiographic science: bringing the person back into scientific psychology, this time forever. Measurement. 2004;2(4):201218. doi:10.1207/s15366359mea0204

    • Search Google Scholar
    • Export Citation
  • 26.

    Birkhoff BD. Proof of the ergodic theorem. Proc Natl Acad Sci USA. 1931;17(12):656660. PubMed ID: 16577406

  • 27.

    Borg GAV. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377381. PubMed ID: 7154893

  • 28.

    Foster C, Florhaug JA, Franklin J, et al. A new approach to monitoring exercise training. J Strength Cond Res. 2001;15(1):109115. PubMed ID: 11708692 doi:10.1016/0968-0896(95)00066-P

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    McLaren SJ, Smith A, Spears IR, Weston M. A detailed quantification of differential ratings of perceived exertion during team-sport training. J Sci Med Sport. 2017;20(3):290295. PubMed ID: 27451269 doi:10.1016/j.jsams.2016.06.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Arney BE, Glover R, Fusco A, et al. Comparison of RPE (rating of perceived exertion) scales for session RPE. Int J Sports Physiol Perform. 2019;14(7):994996. PubMed ID: 30569764 doi:10.1123/ijspp.2018-0637

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Impellizzeri FM, Rampinini E, Coutts AJ, Sassi A, Marcora SM. Use of RPE-based training load in soccer. Med Sci Sports Exerc. 2004;36(6):10421047. PubMed ID: 15179175 doi:10.1249/01.MSS.0000128199.23901.2F

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Osiecki R, Rubio TBG, Coelho RL, et al. The total quality recovery scale (TQR) as a proxy for determining athletes’ recovery state after a professional soccer match. J Exerc Physiol Online. 2015;18(3):2732.

    • Search Google Scholar
    • Export Citation
  • 33.

    Sansone P, Tschan H, Foster C, Tessitore A. Monitoring training load and perceived recovery in female basketball. J Strength Cond Res. 2018;34(10):29292936. PubMed ID: 30589724 doi:10.1519/jsc.0000000000002971

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Silver NC, Dunlap WP. Averaging correlation coefficients: should Fisher’s z transformation be used? J Appl Psychol. 1987;72(1):146148. doi:10.1037/0021-9010.72.1.146

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):312. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    R Foundation for Statistical Computing. R: a language and environment for statistical computing. 2013. http://www.r-project.org/. Accessed 2020.

    • Search Google Scholar
    • Export Citation
  • 37.

    Orie J, Hofman N, Meerhoff LA, Knobbe A. Training distribution in 1500-m speed skating: a case study of an Olympic gold medalist. Int J Sports Physiol Perform. 2020;1:15. PubMed ID: 33004683 doi:10.1123/ijspp.2019-0544

    • Search Google Scholar
    • Export Citation
  • 38.

    Davids K, Hristovski R, Araújo D, Serre NB, Button C, Passos P. Complex Systems in Sport. 1st ed. New York, NY: Routledge; 2014.

  • 39.

    Haslbeck JMB, Bringmann LF, Waldorp LJ. A tutorial on estimating time-varying vector autoregressive models. Multivariate Behav Res. 2021;56(1):120149. PubMed ID: 32324066 doi:10.1080/00273171.2020.1743630

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Hasselman F, Bosman AM. Studying complex adaptive systems with internal states: a recurrence network approach to the analysis of multivariate time-series data representing self-reports of human experience. Front Appl Math Stat. 2020;6(9):114. doi:10.3389/fams.2020.00009

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1644 1644 371
Full Text Views 60 60 2
PDF Downloads 89 89 3